计算机与现代化 ›› 2023, Vol. 0 ›› Issue (01): 88-94.
摘要: 扩展孤立森林(Extended Isolation Forest, EIF)有效解决了孤立森林(Isolation Forest, iForest)对局部异常点不敏感的问题,但EIF将轴平行的孤立条件更替为使用随机斜率的超平面,导致算法模型损失了一部分泛化能力,并由于大量的向量点乘运算增加了时间开销。针对上述情况,提出一种基于模拟退火的扩展孤立森林算法(Extended Isolation Forest based on Simulated Annealing, SA-EIF)。该算法根据每棵孤立树(Isolation Tree, iTree)对于数据集的预测结果计算每棵iTree的精度值和差异值,并基于此构建适应度函数,最终利用模拟退火算法筛选数棵检测性能较优的iTree构建集成学习模型。在ODDS 异常检测数据集中进行K折交叉验证的实验结果表明:SA-EIF算法对局部异常点敏感,较现有的EIF算法减少约20%~40% 的时间开销,提高约5%~10%的检测精度。