计算机与现代化

• 算法设计与分析 • 上一篇    下一篇

一种基于深度Encoder-Decoder神经网络的智能#br# 电网数据服务器流量异常检测算法

  

  1. (广东电力信息科技有限责任公司,广东广州510080)
  • 收稿日期:2018-12-27 出版日期:2019-10-28 发布日期:2019-10-29
  • 作者简介:杨永娇(1990-),女,贵州贵定人,工程师,硕士,研究方向:信息安全,E-mail: yongjiao124@163.com; 唐亮亮(1985-),男,广西桂林人,工程师,硕士,研究方向:计算机软件; 王哲(1990-),男,广东湛江人,工程师,硕士,研究方向:计算机应用。

An Anomaly Detection Method for Network Traffic of Servers #br# in Smart Grid Based on Deep Encoder-Decoder Neural Network

  1. (Guangdong Power Information Technology Co. Ltd., Guangzhou 510080, China)
  • Received:2018-12-27 Online:2019-10-28 Published:2019-10-29

摘要: 传统的网络流量异常检测通常基于单一原始特征变量进行阈值判断,或者对多个相关变量进行降维设计统计量后进行阈值判断,这类方法虽然简单,但无法应对变量间非线性关系随时间变化的情况。本文设计一种能够自适应动态逼近变量间非线性关系的深度神经网络,在普通的Encoder-Decoder神经网络的基础上引入2层注意力机制,提高了神经网络对长期历史信息的利用程度,实现了流量正常状态估计。基于估计得到的流量正常行为,分析其与实测值的残差分布情况,并最终给出置信区间作为判别异常行为的控制限。

关键词: 智能网, 流量异常检测, 深度神经网络, 正常行为模型, 置信区间, 控制限

Abstract: Traditonal network traffic anomaly detection is usually based on single original characteristic variable to judge the threshold value, or to judge the threshold value after the dimensionality reduction design statistics of multiple related variables.Although this kind of method is simple, it cannot cope with the nonlinear relationship between variables changing with time. In this paper, a deep neural network is designed for network traffic anomaly detection, which can dynamically identify the non-linear relationship between variables. Two layers of attention mechanism are introduced into Encoder-Decoder neural network, which improves the utilization of long-term historical information and realizes accurate estimation of the normal state of the network traffic. Based on the normal behavior of the estimated network traffic, the distribution of the residual error between the measured value and the estimated value is analyzed, the confidence interval is finally obtained and regarded as the control limit to distinguish abnormal behavior.

Key words: smart grid, network traffic anomaly detection, deep neural network, normal behavior model, confidence interval, control limit

中图分类号: