[1]HASSAN T, EL-MOWAFY A, WANG K. A review of system integration and current integrity monitoring methods for positioning in intelligent transport systems[J]. IET Intelligent Transport Systems, 2020,15(1):43-60.
[2]YANG Z, PUN-CHENG L. Vehicle detection in intelligent transportation systems and its applications under varying environments: A review[J]. Image and Vision Computing, 2018,69:143-154.
[3]TAO Y J. Innovative approaches for short-term vehicular volume prediction in intelligent transportation system[D]. University of Ottawa, 2020.
[4]WANG Z L, MA X P, HUANG W L. Vehicle license plate recognition based on wavelet transform and vertical edge matching[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020,34(6):1134-1142.
[5]MA J X, TIAN Z, LI Y G, et al. Vehicle tracking method in polar coordinate system based on radar and monocular camera[C]// Chinese Control and Decision Conference (CCDC). 2020:93-98.
[6]GUO L, SHEN X H. Vehicle detection method under night circumstance[J]. Applied Mechanics and Materials, 2013,380:3870-3873.
[7]LI J J, LI J S, WANG J H, et al. Research on moving target detection based on ViBe algorithm[C]// 2020 15th IEEE International Conference on Signal Processing (ICSP). 2020:632-635.
[8]SUN M, ZHANG X R, SUN W, et al. Moving vehicle detection and tracking based on optical flow method and immune particle filter under complex transportation environments[J]. Complexity, 2020. DOI: 10.1155/2020/3805320.
[9]CHEN X, LIU L, DENG Y B, et al. Vehicle detection based on visual attention mechanism and adaboost cascade classifier in intelligent transportation systems[J]. Optical and Quantum Electronics, 2019,51. DOI: 10.1007/s11082-019-1977-7.
[10]CAO L J, JIANG Q L, CHENG M, et al. Robust vehicle detection by combining deep features with exemplar classification[J]. Neurocomputing, 2016,215:225-231.
[11]ZHU Q Q, HANG L, GUO W M. Research on vehicle detection and direction determination based on deep learning[C]// The 5th International Conference on Vehicle, Mechanical and Electrical Engineering. 2019. DOI: 10.5220/0008849700260031.
[12]MO Y Y, HAN G Q, ZHANG H D, et al. Highlight-assisted nighttime vehicle detection using a multi-level fusion network and label hierarchy[J]. Neurocomputing, 2019,355:13-23.
[13]刘璐. 夜间道路图像增强及车辆检测算法研究[D]. 长春:吉林大学, 2020.
[14]TAN L, LV X Y, LIAN X F, et al. YOLOv4_Drone: UAV image target detection based on an improved YOLOv4 algorithm[J]. Computers and Electrical Engineering, 2021,93(C). DOI: 10.1016/j.compeleceng. 2021.107261.
[15]HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]// European Conference on Computer Vision. Springer, 2016:630-645.
[16]HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
[17]LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:8759-8768.
[18]王凤随,王启胜,陈金刚,等. 基于注意力机制和Soft-NMS的改进Faster R-CNN目标检测算法[J]. 激光与光电子学进展, 2021,58(24):405-416.
[19]戴爱霞. 用于图像处理的自动白平衡算法的研究及实现[D]. 苏州:苏州大学, 2019.
[20]张琴涛. 基于改进YOLOv3的口罩佩戴检测算法研究[D]. 天津:天津工业大学, 2021.
[21]冀树伟. 基于SSD的交通场景下多目标检测算法研究[D]. 太原:中北大学, 2019.
[22]高樱萍,宋丹,王雅静,等. 一种改进的K-means聚类服装图像分割算法[J]. 湖南工程学院学报(自然科学版), 2021,31(2):54-59.
[23]沈记全,陈相均,翟海霞. 基于改进边界框回归损失的YOLOv3检测算法[J]. 计算机工程, 2022(3):236-243.
[24]FRAHM G. An intersection-Union test for the sharpe ratio[J]. Risks, 2018,6(2):1-13.
[25]WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// European Conference Computer Vision. 2018:3-19.
[26]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on International Conference on Machine Learning. 2015,37:448-456.
[27]MISRA D. Mish: A self regularized non-monotonic neural activation function[J]. arXiv preprint arXiv:1908.08681, 2020.
[28]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020,42(2):318-327.
[29]LI B Y, LIU Y, WANG X G. Gradient harmonized single-stage detector[J]. arXiv preprint arXiv:1811.05181, 2018.
[30]WEN L Y, DU D W, CAI Z W, et al. UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020,193:102907.
|