[1] BAGUI S, FANG X G, KALAIMANNAN E, et al. Comparison of machine-learning algorithms for classification of VPN network traffic flow using time-related features[J]. Journal of Cyber Security Technology, 2017,1(2):108-126.
[2] ACETO G, CIUONZO D, MONTIERI A, et al. DISTILLER: Encrypted traffic classification via multimodal multitask deep learning[J]. Journal of Network and Computer Applications, 2021,183-184:102985.
[3] REZAEI S, LIU X. Deep learning for encrypted traffic classification: An overview [J]. IEEE Communications Magazine, 2019,57(5):76-81.
[4] FINSTERBUSCH M, RICHTER C, ROCHA E, et al. A survey of payload-based traffic classification approaches[J]. IEEE Communications Surveys & Tutorials, 2013,16(2):1135-1156.
[5] PARK J S, YOON S H, KIM M S. Performance improvement of payload signature-based traffic classification system using application traffic temporal locality[C]// 2013 15th Asia-Pacific Network Operations and Management Symposium(APNOMS). 2013:1-6.
[6] DI MAURO M, LONGO M. Revealing encrypted WebRTC traffic via machine learning tools[C]// 2015 12th International Joint Conference on e-Business and Telecommunications(ICETE). 2015,4:259-266.
[7] WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]// 2017 IEEE International Conference on Intelligence and Security Informatics(ISI). 2017:43-48.〖HJ0.8mm〗
[8] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(8):1798-828.
[9] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.
[10]NGUYEN A, YOSINSKI J, CLUNE J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:427-436.
[11]LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[12]VAN DEN OORD A, VINYALS O, KAVUKCUOGLU K. Neural discrete representation learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6309-6318.
[13]KUMANO Y, ATA S, NAKAMURA N, et al. Towards real-time processing for application identification of encrypted traffic[C]// 2014 International Conference on Computing, Networking and Communications(ICNC). 2014:136-140.
[14]COULL S E, DYER K P. Traffic analysis of encrypted messaging services: Apple iMessage and beyond[J]. ACM SIGCOMM Computer Communication Review, 2014,44(5):6-11.
[15]BAR-YANAI R, LANGBERG M, PELEG D, et al. Realtime classification for encrypted traffic[C]// International Symposium on Experimental Algorithms. 2010:373-385.
[16]WANG D W, ZHANG L S, YUAN Z L, et al. Characterizing application behaviors for classifying P2P traffic[C]// 2014 International Conference on Computing, Networking and Communications(ICNC). 2014:21-25.
[17]DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and vpn traffic using time-related[C]// Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP). 2016:407-414.
[18]CROTTI M, DUSI M, GRINGOLI F, et al. Traffic classification through simple statistical fingerprinting[J]. ACM SIGCOMM Computer Communication Review, 2007,37(1):5-16.
[19]YAMANSAVASCILAR B, GUVENSAN M A, YAVUZ A G, et al. Application identification via network traffic classification[C]// 2017 International Conference on Computing, Networking and Communications (ICNC). 2017:843-848.
[20]WANG P, CHEN X J, YE F, et al. A survey of techniques for mobile service encrypted traffic classification using deep learning[J]. IEEE Access, 2019,7:54024-54033.
[21]WANG Z Y. The applications of deep learning on traffic identification[J]. BlackHat USA, 2015,24(11).
[22]WANG W, ZHU M, ZENG X W, et al. Malware traffic classification using convolutional neural network for representation learning[C]// 2017 International Conference on Information Networking (ICOIN). 2017:712-717.
[23]LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al. Network traffic classifier with convolutional and recurrent neural networks for internet of things[J]. IEEE Access, 2017,5:18042-18050.
[24]LOTFOLLAHI M, SIAVOSHANI M J, ZADE R S H, et al. Deep packet: A novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020,24(3):1999-2012.
[25]REZAEI S, LIU X. Multitask learning for network traffic classification[C]// 2020 29th International Conference on Computer Communications and Networks(ICCCN). 2020.
[26]HUANG H, DENG H J, CHEN J, et al. Automatic multi-task learning system for abnormal network traffic detection[J]. International Journal of Emerging Technologies in Learning, 2018,13(4):4-20.
[27]DRUCKER H, LE CUN Y. Improving generalization performance using double backpropagation[J]. IEEE Transactions on Neural Networks, 1992,3(6):991-997.
[28]GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing. 2017:5769-5779.
[29]HENDRYCKS D, GIMPEL K. A baseline for detecting misclassified and out-of-distribution examples in neural networks[J]. arXiv preprint arXiv:1610.02136, 2016.
[30]GAL Y, GHAHRAMANI Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning[C]// International Conference on Machine Learning. 2016:1050-1059.
[31]LAKSHMINARAYANAN B, PRITZEL A, BLUNDELL C. Simple and scalable predictive uncertainty estimation using deep ensembles[J]. arXiv preprint arXiv:1612.01474, 2016.
[32]GARDNER M W, DORLING S R. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences[J]. Atmospheric Environment, 1998,32(14-15):2627-2636.
[33]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]// International Conference on Neural Information Processing Systems. 2012:1097-1105.
|