[1] TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: Closing the gap to human-level performance in face verification[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:1701-1708.
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[3] DANELLJAN M, HAGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW). 2015:621-629.
[4] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[J]. arXiv preprint arXiv:1312.6199, 2013.
[5] YUAN X Y, HE P, ZHU Q L, et al. Adversarial examples: Attacks and defenses for deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(9):2805-2824.
[6] 〖KG-*4/5〗CHEN J B, JORDAN M I, WAINWRIGHT M J. HopSkipJumpAttack: A query-efficient decision-based attack[J]. arXiv preprint arXiv:1904.02144, 2019.
[7] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.
[8] PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]// Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P). 2016:372-387.
[9] CHEN P Y, ZHANG H, SHARMA Y, et al. ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]// Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. 2017:15-26.
[10]SU J W, VARGAS D V, SAKURAI K. One pixel attack for fooling deep neural networks[J]. IEEE Transactions on Evolutionary Computation, 2019,23(5):828-841.
[11]RITTER S, BARRETT D G T, SANTORO A, et al. Cognitive psychology for deep neural networks: A shape bias case study[C]// Proceedings of the 34th International Conference on Machine Learning. 2017:2940-2949.
[12]LI Y X. Deep reinforcement learning: An overview[J]. arXiv preprint arXiv:1701.07274, 2017.
[13]MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540):529-533.
[14]SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016,529(7587):484-489.
[15]VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-Learning[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016:2094-2100.
[16]WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]// Proceedings of the 33rd International Conference on Machine Learning. 2016:1995-2003.
[17]WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
[18]YANG C Y, MA C, YANG M H. Single-image super-resolution: A benchmark[C]// Proceedings of the 2014 European Conference on Computer Vision. 2014:372-386
[19]LAI W S, HUANG J B, HU Z, et al. A comparative study for single image blind deblurring[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:1701-1709.
[20]KRIZHEVSKY A, HINTON G. Learning Multiple Layers of Features from Tiny Images[R]. University of Toronto, 2009.
[21]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[22]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[23]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[24]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[25]KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
|