[1] KOTWAL A, BHALODIA R, AWATE S P. Joint desmoking and denoising of laparoscopy images[C]// Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging. 2016:1050-1054.
[2] BAID A, KOTWAL A, BHALODIA R, et al. Joint desmoking, specularity removal, and denoising of laparoscopy images via graphical models and Bayesian inference[C]// Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging. 2017:732-736.
[3] WELD K J, DRYER S, AMES C D, et al. Analysis of surgical smoke produced by various energy-based instruments and effect on laparoscopic visibility[J]. Journal of Endourology, 2007,21(3):347-351.
[4] MCCARTNEY E J, HALL F F. Optics of the atmosphere: Scattering by molecules and particles[J]. Physics Today, 1977,30(5):76-77.
[5] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009:1956-1963.
[6] LUO X B, MCLEOD A J, PAUTLER S E, et al. Vision-based surgical field defogging[J]. IEEE Transactions on Medical Imaging, 2017,36(10):2021-2030.
[7] 张金泉,杨进华,卢珊. 基于同态滤波的图像去烟雾方法研究[J]. 科技信息, 2015(7):71.
[8] TCHAKA K, PAWAR V M, STOYANOVA D. Chromaticity based smoke removal in endoscopic images[C]// Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) 2017 Conference Series. 2017,DOI:10.1117/12.2254622.
[9] WANG C C, CHEIKH F A, KAANICHE M, et al. Variational based smoke removal in laparoscopic images[J]. Biomedical Engineering Online, 2018,17,DOI:10.1186/s12938-018-0590-5.
[10]BOLKAR S, WANG C C, CHEIKH F A, et al. Deep smoke removal from minimally invasive surgery videos[C]// Proceedings of the 2018 25th IEEE International Conference on Image Processing. 2018:3403-3407.
[11]GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:2672-2680.
[12]ISDLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:5967-5976.
[13]SAXENA A, CHUNG S H, NG A Y. Learning depth from single monocular images[C]// Proceedings of the 18th International Conference on Neural Information Processing Systems. 2005:1161-1168.
[14]RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015:234-241.
[15]李鹏越,田建东,王国霖,等. 面向机器人环境共融的图像去雪算法[J]. 机械工程学报, 2019,55(11):98-104.
[16]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:2261-2269.
[17]CHEN L, TANG W, JOHN N W, et al. SLAM-based dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality[J]. Computer Methods and Programs in Biomedicine, 2018,158:135-146.
[18]李森. 火灾初期建筑内图像清晰化及人员检测技术研究[D]. 合肥:中国科学技术大学, 2014.
[19]许骏. 面向火灾场景的图像去烟雾系统研究[D]. 上海:东华大学, 2016.
[20]TSUI C, KLEIN R, GARABRANT M. Minimally invasive surgery: National trends in adoption and future directions for hospital strategy[J]. Surgical Endoscopy, 2013,27(7):2253-2257.
[21]ULMER B C. The hazards of surgical smoke[J]. AORN Journal, 2008,87(4):721-738.
[22]CHEN L, TANG W, JOHN N W. Unsupervised learning of surgical smoke removal from simulation[C]// Proceedings of the 2018 Hamlyn Symposium on Medical Robotics. 2018.
[23]TANG K T, YANG J C, WANG J. Investigating haze-relevant features in a learning framework for image dehazing[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:2995-3002.
|