[1] CHANGIZI M. Why does music make us feel[N]. Scientific American, 2009-09-15.
[2] EEROLA T, VUOSKOSKI J K. A comparison of the discrete and dimensional models of emotion in music[J]. Psychology of Music, 2011,39(1):18-49.
[3] PATRA B G, DAS D, BANDYOPADHYAY S. Unsupervised approach to hindi music mood classification[M]// Mining Intelligence and Knowledge Exploration. Springer International Publishing, 2013:62-69.
[4] 邵曦,陶凯云. 基于音乐内容和歌词的音乐情感分类研究[J]. 计算机技术与发展, 2015,25(8):184-187.
[5] 王瑶,徐昌,舒福舟. 基于SVM算法的两种特征提取的图像分类方法分析[J]. 电脑与信息技术, 2019,27(6):18-20.
[6] 刘华祠. 基于传统机器学习与深度学习的图像分类算法对比分析[J]. 电脑与信息技术, 2019,27(5):12-15.
[7] HAN K, YU D, TASHEV I. Speech emotion recognition using deep neural network and extreme learning machine[C]// Conference of the International Speech Communication Association(INTERSPEECH 2014). 2014:223-227.
[8] LAURIER C, GRIVOLLA J, HERRERA P. Multimodal music mood classification using audio and lyrics[C]// International Conference on Machine Learning and Applications. 2008:688-693.
[9] HU X, DOWNIE J S. Improving mood classification in music digital libraries by combining lyrics and audio[C]// ACM/IEEE Joint Conference on Digital Libraries. 2010:159-168.
[10]DEFFERRARD M, BENZI K, VANDERGHEYNST P, et al. FMA: A dataset for music analysis[J]. Sound, 2016:arXiv:1612.01840.
[11]BALTRUSAITIS T, AHUJA C, MORENCY L. Multimodal machine learning: A survey and taxonomy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(2):423-443.
[12]陈青,龚乾,张鸣. 基于语谱图的声乐分析[J]. 微计算机信息, 2010,26(21):6-8.
[13]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Computer Vision and Pattern Recognition(CVPR 2016). 2016:770-778.
[14]HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]// European Conference on Computer Vision. 2016:630-645.
[15]XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]// Computer Vision and Pattern Recognition(CVPR 2017). 2017:5987-5995.
[16]HUANG G, LIU Z, DER MAATEN L V, et al. Densely connected convolutional networks[C]// Computer Vision and Pattern Recognition(CVPR 2017). 2017:2261-2269.
[17]VEIT A, WILBER M J, BELONGIE S. Residual networks behave like ensembles of relatively shallow networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:550-558.
[18]WANG J, LIU X, CHEN Y J, et al. Filtering normal papanicolaou smear with multi-instance learning[C]// IEEE International Conference on Signal and Image Processing. 2016:113-117.
[19]LIU W Y, WEN Y D, YU Z D, et al. SphereFace: Deep hypersphere embedding for face recognition[C]// Computer Vision and Pattern Recognition(CVPR 2017). 2017:6738-6746.
[20]SUN Y F, CHENG C M, ZHANG Y H, et al. Circle Loss: A unified perspective of pair similarity optimization[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR 2020). 2020:6397-6406.
[21]汤凯,何庆,赵群,等. 基于改进的深度残差网络的图像识别[J]. 南京师大学报(自然科学版), 2019,42(3):115-121.
[22]冯超. 深度学习轻松学:核心算法与视觉实践[M]. 北京:电子工业出版社, 2017.
[23]贺伟,姚娅川,彭彩平. 一种基于BoW模型的图像分类方法研究[J]. 科技创新与应用, 2017(10):45.
|