[1] TODA Y, OKURA F. How convolutional neural networks diagnose plant disease[J]. Plant Phenomics, 2019, DOI: 10.34133/2019/9237136.
[2] BHARALI P, BHUYAN C, BORUAH A. Plant disease detection by leaf image classification using convolutional neural network[C]// Proceedings of the 2019 International Conference on Information, Communication and Computing Technology. 2019:194-205.
[3] ZHANG S W, SHANG Y J, WANG L. Plant disease recognition based on plant leaf image[J]. The Journal of Animal & Plant Sciences, 2015,25(S1):42-45.
[4] SHI Y, WANG X F, ZHANG S W, et al. PNN based crop disease recognition with leaf image features and meteorological data[J]. International Journal of Agricultural and Biological Engineering, 2015,8(4):60-68.
[5] GUI J S, HAO L, ZHANG Q, et al. A new method for soybean leaf disease detection based on modified salient regions[J]. International Journal of Multimedia and Ubiquitous Engineering, 2015,10(6):45-52.
[6] RAMCHARAN A, BARANOWSKI K, MCCLOSKEY P, et al. Deep learning for image-based cassava disease detection[J]. Frontiers in Plant Science, 2017,8, DOI: 10.3389/fpls.2017.01852.
[7] SINGH U P, CHOUHAN S S, JAIN S, et al. Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease[J]. IEEE Access, 2019,7:43721-43729.
[8] SARANGI S, UMADIKAR J, KAR S. Automation of agriculture support systems using Wisekar: Case study of a crop-disease advisory service[J]. Computers and Electronics in Agriculture, 2016,122:200-210.
[9] 董本志,康欣,任洪娥. 植物叶片轮廓特征提取方法研究[J]. 计算机工程与应用, 2015,51(8):143-147.
[10]李洋,李岳阳,罗海驰,等. 基于形状特征的植物叶片在线识别方法[J]. 计算机工程与应用, 2017,53(2):162-165.
[11]付波,杨章,赵熙临,等. 基于降维LBP与叶片形状特征的植物叶片识别方法[J]. 计算机工程与应用, 2018,54(2):173-176.
[12]王振,张善文,赵保平. 基于级联卷积神经网络的作物病害叶片分割[J/OL]. 计算机工程与应用, (2019-08-15)[2020-01-10]. https://kns.cnki.net/kcms/detail/11.2127.tp.20190815.1510.010.html.
[13]郑雪辉,王士同. 基于迁移学习的径向基函数神经网络学习[J]. 计算机工程与应用, 2016,52(5):6-10.
[14]蒋留兵,周小龙,姜风伟,等. 基于改进匹配网络的单样本学习[J]. 系统工程与电子技术, 2019,41(6):1210-1217.
[15]关胤. 基于残差网络迁移学习的花卉识别系统[J]. 计算机工程与应用, 2019,55(1):174-179.
[16]邢恩旭,吴小勇,李雅娴. 基于迁移学习的双层生成式对抗网络[J]. 计算机工程与应用, 2019,55(15):38-46.
[17]GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014,2:2672-2680.
[18]RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015.
[19]MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014.
[20]ZHANG H, XU T, LI H S, et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). 2017:5908-5916.
[21]TAJBAKHSH N, SHIN J Y, GURUDU S R, et al. Convolutional neural networks for medical image analysis: Full training or fine tuning?[J]. IEEE Transactions on Medical Imaging, 2016,35(5):1299-1312.
[22]RADENOVIC F, TOLIAS G, CHUM O. CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:3-20.
[23]JUNG H, LEE S, YIM J, et al. Joint fine-tuning in deep neural networks for facial expression recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). 2015:2983-2991.
[24]HOWARD J, RUDER S. Universal language model fine-tuning for text classification[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. 2018:328-339.
[25]NAGABANDI A, KAHN G, FEARING R S, et al. Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning[C]// Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018:7559-7566.
[26]ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2242-2251.
[27]CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:2180-2188.
[28]LI C X, XU K, ZHU J, et al. Triple generative adversarial nets[J]. arXiv:1703.02291, 2017.
[29]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[30]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[31]SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017:4278-4284.
[32]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012:1097-1105.
[33]XIONG H Y, WANG K F, BIAN J, et al. SpHMC: Spectral Hamiltonian Monte Carlo[C]// Proceedings of the 2019 AAAI Conference on Artificial Intelligence. 2019:5516-5524.
[34]ZHONG Z, ZHENG L, KANG G L, et al. Random erasing data augmentation[J]. arXiv:1708.04896, 2017.
[35]DEVRIES T, TAYLOR G W. Dataset augmentation in feature space[J]. arXiv:1702.05538, 2017.
[36]曹廷荣,陆玲,龚燕红,等. 基于对抗网络的验证码识别方法[J/OL]. 计算机工程与应用, (2019-04-18)[2020-01-10]. https://kns.cnki.net/kcms/detail/11.2127.tp.20190416.1750.022.html.
|