[1] 李琼. RDF流分布式处理框架研究[D]. 天津:天津大学, 2017.
[2] TOMMASINI R, DELLA VALLE E, MAURI A, et al. RSPLab: RDF stream processing benchmarking made easy〖JP4〗[C]// International Semantic Web Conference. 2017:202-209.
[3] DELL’AGLIO D, DELLA VALLE E, CALBIMONTE J P, et al. RSP-QL semantics: A unifying query model to explain heterogeneity of RDF stream processing systems[J]. International Journal on Semantic Web and Information Systems, 2014,10(4):17-44.
[4] MAURI A, CALBIMONTE J P, DELL’AGLIO D, et al. Triplewave: Spreading RDF streams on the web[C]// International Semantic Web Conference. 2016:140-149.
[5] BOLLES A, GRAWUNDER M, JACOBI J. Streaming SPARQL-extending SPARQL to process data streams[C]//European Semantic Web Conference. 2008:448-462.
[6] BARBIERI D F, BRAGA D, CERI S, et al. Querying RDF streams with C-SPARQL[J]. ACM SIGMOD Record, 2010,39(1):20-26.
[7] BARBIERI D F, BRAGA D, CERI S, et al. C-SPARQL:SPARQL for continuous querying[C]// The 18th International Conference on World Wide Web. 2009:1061-1062.
[8] ANICIC D, FODOR P, RUDOLPH S, et al. EP-SPARQL: A unified language for event processing and stream reasoning[C]// Proceedings of the 20th ACM International Conference on World Wide Web. 2011:635-644.
[9] CALBIMONTE J P, CORCHO O, GRAY A J G. Enabling ontology-based access to streaming data sources[C]// International Semantic Web Conference. 2010:96-111.
[10]LE-PHUOC D, DAO-TRAN M, PARREIRA J X, et al. A native and adaptive approach for unified processing of linked streams and linked data[C]// International Semantic Web Conference. 2011:370-388.
[11]REN X, KHROUF H, KAZI-AOUL Z, et al. On measuring performances of C-SPARQL and CQELS[J]. arXiv:1611.08269, 2016.
[12]李国鼎,冯志勇,饶国政,等. 基于BSP的SPARQL基本图模式查询算法[J]. 计算机工程, 2014,40(9):37-41.
[13]LE-PHUOC D, QUOC H N M, LE VAN C, et al. Elastic and scalable processing of linked stream data in the cloud〖JP4〗[C]// International Semantic Web Conference. 2013:280-297.
[14]REN X, CUR O. Strider: A hybrid adaptive distributed RDF stream processing engine[C]// International Semantic Web Conference. 2017:559-576.
[15]SUN D, ZHANG G, YANG S, et al. Re-Stream: Real-time and energy-efficient resource scheduling in big data stream computing environments[J]. Information Sciences, 2015,319:92-112.
[16]李名扬. 基于DAG的数据流处理与分析引擎的研究与实现[D]. 北京:北京理工大学, 2016.
[17]KATSIFODIMOS A, SCHELTER S. Apache Flink: Stream analytics at scale[C]// 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW). 2016:193.
[18]DELL’AGLIO D, DAO-TRAN M, CALBIMONTE J P, et al. A query model to capture event pattern matching in RDF stream processing query languages[C]// European Knowledge Acquisition Workshop. 2016:145-162.
[19]ZHANG Y, DUC P M, CORCHO O, et al. SRBench: A streaming RDF/SPARQL benchmark[C]// International Semantic Web Conference. 2012:641-657.
[20]KARUNARATNE P, KARUNASEKERA S, HARWOOD A. Distributed stream clustering using micro-clusters on Apache Storm[J]. Journal of Parallel and Distributed Computing, 2017,108:74-84.
[21]QUOC D L, CHEN R, BHATOTIA P, et al. Approximate stream analytics in apache flink and apache spark streaming[J].arXiv:1709.02946,2017.
[22]VORA M N. Hadoop-HBase for large-scale data[C]// Proceedings of 2011 IEEE International Conference on Computer Science and Network Technology. 2011,1:601-605.
[23]LE-PHUOC D, QUOC H N M, LE VAN C, et al. Elastic and scalable processing of linked stream data in the cloud[C]// International Semantic Web Conference. 2013:280-297.
[24]宋纪成. 海量RDF数据存储与查询技术的研究与发现[D]. 北京:北京工业大学, 2013.
[25]MYUNG J, YEON J, LEE S. SPARQL basic graph pattern processing with iterative MapReduce[C]// Proceedings of 2010 ACM Workshop on Massive Data Analytics on the Cloud. 2010:6.
[26]GUO Y, PAN Z, HEFLIN J. LUBM: A benchmark for OWL knowledge base systems[J]. Web Semantics: Science, Services and Agents on the World Wide Web, 2005,3(2-3):158-182.
[27]WANG Z, DAI W, WANG F, et al. Kafka and its using in high-throughput and reliable message distribution[C]//2015 8th IEEE International Conference on Intelligent Networks and Intelligent Systems. 2015:117-120.
[28]KARIMOV J, RABL T, KATSIFODIMOS A, et al. Benchmarking distributed stream processing engines[J]. arXiv:1802.08496, 2018.
|