[1] 吴水清,王宇,师岩. 基于SSD的车辆目标检测[J]. 计算机与现代化, 2019(5):35-40.
[2] JIAO L C, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J]. IEEE Access, 2019,7:128837-128868.
[3] LI H X, LIN Z, SHEN X H, et al. A convolutional neural network cascade for face detection[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:5325-5334.
[4] FORSYTH D. Object detection with discriminatively trained part-based models[J]. Computer, 2014,47(2):6-7.
[5] HU H, GU J Y, ZHANG Z, et al. Relation networks for object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:3588-3597.
[6] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018,77:354-377.
[7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:21-37.
[10]ZHAO Z Q, ZHENG P, XU S T, et al. Object detection with deep learning: A review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(11):3212-3232.
[11]吴晓敏,耿春明. 基于机器视觉的酒液异物智能检测方法研究[J]. 机械工程与自动化, 2016(1):166-168.
[12]CAI Z W, VASCONCELOS N. Cascade R-CNN: High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (Early Access), 2019, DOI: 10.1109/TPAMI.2019.2956516.
[13]CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:6154-6162.
[14]BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: Improving object detection with one line of code[C]// Proceedings of the 2017 International Conference on Computer Vision. 2017:5562-5570.
[15]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(2):318-327.
[16]ZHU X Z, HU H, LIN S, et al. Deformable convnets v2: More deformable, better results[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. 2019:9308-9316.
[17]DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:764-773.
[18]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[19]TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. 2019:9626-9635.
[20]PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: Towards balanced learning for object detection[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. 2019:821-830.
[21]UYMAZ S A, MSONDA P. Spatial pyramid pooling in deep convolutional neural networks for facial expression recognition[C]// Proceedings of the 2nd International Conference of Engineering, Science and Mathematics Education. 2019.
[22]NAJIBI M, SINGH B, DAVIS L S. AutoFocus: Efficient multi-scale inference[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. 2019:9744-9754.
[23]NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]// Proceedings of the 18th International Conference on Pattern Recognition. 2006,3:850-855.
|