[1] 陶雪娇,胡晓峰,刘洋. 大数据研究综述[J]. 系统仿真学报, 2013,25(S1):142-146.
[2] YU S, YANG M, QU Q, et al. Contextual-boosted deep neural collaborative filtering model for interpretable recommendation[J]. Expert Systems with Applications, 2019,136:365-375.
[3] KOREN Y. Collaborative filtering with temporal dynamics[J]. Communications of the ACM, 2010,53(4):89-97.
[4] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8):30-37.
[5] 〖JP+2〗MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C]// Proceedings of the 1st International Conference on Learning Representations. 2013.
[6] PENNINGTON J, SOCHER R, MANNING C D. GloVe: Global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014:1532-1543.
[7] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[8] SAINATH T N, KINGSBURY B, MOHAMED A-R, et al. Improvements to deep convolutional neural networks for LVCSR[C]// Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. 2013:315-320.
[9] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. 2017:173-182.
[10]WANG H, WANG N Y, YEUNG D-Y. Collaborative deep learning for recommender systems[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015:1235-1244.
[11]KIM D H, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation[C]// Proceedings of the 10th ACM Conference on Recommender Systems. 2016:233-240.
[12]WU C-Y, AHMED A, BEUTEL A, et al. Joint training of ratings and reviews with recurrent recommender networks[C]// Proceedings of the 5th International Conference on Learning Representations. 2017.
[13]曾安,聂文俊. 基于深度双向LSTM的股票推荐系统[J]. 计算机科学, 2019,46(10):84-89.
[14]李南星,盛益强,倪宏. 用于个性化推荐的条件卷积隐因子模型[J/OL]. 计算机工程, (2019-05-28)[2020-02-16]. https://doi.org/10.19678/j.issn.1000-3428.0054209.
[15]KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014:1746-1751.
[16]WU Y, DUBOIS C, ZHENG A X, et al. Collaborative denoising auto-encoders for top-n recommender systems[C]// Proceedings of the 9th ACM International Conference on Web Search and Data Mining. 2016:153-162.
[17]STRUB F, MARY J. Collaborative filtering with stacked denoising autoencoders and sparse inputs[C]// NIPS Workshop on Machine Learning for eCommerce. 2015.
[18]SEDHAIN S, MENON A K, SANNER S, et al. AutoRec: Autoencoders meet collaborative filtering[C]// Proceedings of the 24th International Conference on World Wide Web. 2015:111-112.
[19]SHIBATA H, TAKAMA Y. Behavior analysis of RBM for estimating latent factor vectors from rating matrix[C]// Proceedings of the 2017 6th International Conference on Informatics, Electronics and Vision, 2017 7th International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT). 2017.
[20]SARWAR B, KARYPIS G, KONSTAN J, et al. Incremental singular value decomposition algorithms for highly scalable recommender systems[C]// Proceedings of the 2002 International Conference on Computer and Information Science. 2002:27-28.
[21]ZHAO L L, LU Z Q, PAN S J L, et al. Matrix factorization+ for movie recommendation[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016:3945-3951.
[22]HE X N, CHUA T-S. Neural factorization machines for sparse predictive analytics[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017:355-364.
[23]SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]// Proceedings of the 24th International Conference on Machine Learning. 2007:791-798.
|