计算机与现代化 ›› 2019, Vol. 0 ›› Issue (03): 28-.doi: 10.3969/j.issn.1006-2475.2019.03.006
收稿日期:
2018-09-11
出版日期:
2019-04-08
发布日期:
2019-04-10
作者简介:
詹伟(1979-),男,湖北武汉人,高级工程师,博士,研究方向:财务信息化,信息系统运维管理,E-mail: liansept@163.com; 张科(1983-),男,湖北荆门人,高级工程师,博士,研究方向:信息系统运维管理; 徐焕(1981-),男,湖北武汉人,高级工程师,本科,研究方向:ERP和数据库相关系统运维管理; 罗弦(1982-),男,湖北武汉人,工程师,硕士,研究方向:大数据及海量数据相关技术; 龙霏(1983-),女,湖北武汉人,高级工程师,硕士,研究方向:人资信息化及信息系统运维管理; 纪依依(1985-),女,湖北十堰人,讲师,硕士,研究方向:计算机应用。
基金资助:
Received:
2018-09-11
Online:
2019-04-08
Published:
2019-04-10
摘要: 提出一种采用扩散速度对活体人脸和伪造人脸的光照特性差异建模的方法。针对手机端的人脸识别活体检测的需求,根据伪造照片相对于活体照片有光照反射特性呈现出更加均衡、扩散更缓慢的特点,提出一种基于图像扩散(反射)速度模型(Diffusion Speed Model)的活体检测方法,通过引入全变差流(TV)来获得扩散速度,在得到的扩散速度图基础上,利用LSP编码(类似LBP)获取的局部速度特征向量作为线性SVM分类器的输入,经分类区分输入影像的真伪。通过设计多组对比实验,表明不管在室内环境或者在室外环境、多种人脸姿态和表情以及各种光照情况下,算法均能获得非常好的识别效果,而且基于LSP的基础方案具有高度的实时性和有效性,可以部署在各种移动终端设备中,实现跨平台一键式植入应用。
中图分类号:
詹伟,张科,徐焕,罗弦,龙霏,纪依依. 一种基于扩散速度的移动应用端活体人脸识别技术[J]. 计算机与现代化, 2019, 0(03): 28-.
ZHAN Wei, ZHANG Ke, XU Huan, LUO Xian, LONG Fei, JI Yi-yi. A Mobile Face Recognition Technology Based on Diffusion Speed[J]. Computer and Modernization, 2019, 0(03): 28-.
[1] ROSS A A, NANDAKUMAR K, JAIN A K. Handbook of Multibiometrics[M]. Springer, US, 2006. [2] JAIN A K, ROSS A, PANKANTI S. Biometrics: A Tool for Information Security[M]. IEEE Press, 2006. [3] OGORMAN L. Comparing passwords, tokens, and biometrics for user authentication[J]. Proceedings of the IEEE, 2003,91(12):2021-2040. [4] LAWTON G. Biometrics: A new era in security[J]. Computer, 2002,31(8):16-18. [5] ROSS A, JAIN A. Information fusion in biometrics[J]. Pattern Recognition Letters, 2003,24(13):2115-2125. [6] SCHUCKERS S A C. Spoofing and anti-spoofing measures[J]. Information Security Technical Report, 2002,7(4):56-62. [7] JAIN A K, PANKANTI S, PRABHAKAR S, et al. Biometrics: A grand challenge[J]. International Conference on Pattern Recognition, 2004,2(4):935-942. [8] GRAGNANIELLO D, POGGI G, SANSONE C, et al. Local contrast phase descriptor for fingerprint liveness detection[J]. Pattern Recognition, 2015,48(4):1050-1058. [9] FAUNDEZ-ZANUY M. Biometric security technology[J]. IEEE Aerospace & Electronic Systems Magazine, 2006,21(6):15-26. [10]CHIRILLO J, BLAUL S. Implementing Biometric Security[M]. Indianapolis Wiley, 2003. [11]KWAN P W, WELCH M C, FOLEY J J. A knowledge-based decision support system for adaptive fingerprint identification that uses relevance feedback[J]. Knowledge-Based Systems, 2015,73:236-253. [12]ALI M M H, MAHALE V H, YANNAWAR P, et al. Fingerprint recognition for person identification and verification based on minutiae matching[C]// 2016 IEEE 6th International Conference on Advanced Computing. 2016:332-339. [13]DING C, TAO D. Robust face recognition via multimodal deep face representation[J]. IEEE Transactions on Multimedia, 2015,17(11):2049-2058. [14]HU G, YANG Y, YI D, et al. When face recognition meets with deep learning: An evaluation of convolutional neural networks for face recognition[C]// Proceedings of IEEE International Conference on Computer Vision Workshops. 2015:142-150. [15]MADANE M, THEPADE S. Score level fusion based bimodal biometric identification using Thepade’s sorted n-ary block truncation coding with variod proportions of iris and palmprint traits[J]. Procedia Computer Science, 2016,79:466-473. [16]DAUGMAN J. New methods in iris recognition[J]. IEEE Transactions on Systems Man Cybernetics-System, 2007,37(5):1167-1175. [17]THALHEIM L, KRISSLER J, ZIEGLER P M. Body Check[J/OL]. Translated by SMITH R W.(2002-02-11). http://www.heise.de/ct/english/02/11/114. [18]ALTER F, DURAND S, FROMENT J. Adapted total variation for artifact free decompression of JPEG images[J]. Journal of Mathematical Imaging & Vision, 2005,23(2):199-211. [19]TAKASHI M, KEIICHI T, TAKAO K. Imposture using synthetic speech against speaker verification based on spectrum and pitch[C]// Proceedings of International Conference on Semiconductor Laser and Photonics. 2000:302-305. [20]LEON P L D, APSINGEKAR V R, PUCHER M, et al. Revisiting the security of speaker verification systems against imposture using synthetic speech[C]// IEEE International Conference on Acoustics Speech and Signal Processing. 2010:1798-1801. [21]MEYER H. Six biometric devices point the finger at security[J]. Computers and Security, 1998,17(5):410-411. [22]JIN Q, TOTH A R, BLACK A W, et al. Is voice transformation a threat to speaker identification?[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. 2008:4845-4848. [23]CHINGOVSKA I, ANJOS A, MARCEL S. On the effectiveness of local binary patterns in face anti-spoofing[C]// IEEE International Conference of the Biometrics Special Interest Group(BIOSIG). 2012:1-7. |
[1] | 王艳媛, 茅正冲. 中英文场景文本图像的检测和识别算法[J]. 计算机与现代化, 2024, 0(12): 84-90. |
[2] | 董玉玟. 基于改进YOLOv7-tiny的多尺度运动目标检测算法[J]. 计算机与现代化, 2024, 0(11): 99-105. |
[3] | 祁贤, 刘大铭, 常佳鑫. 基于改进自注意力机制的多视图三维重建[J]. 计算机与现代化, 2024, 0(11): 106-112. |
[4] | 陈凯1, 李宜汀1, 2, 全华凤1 . 基于改进YOLOv8的河道废弃瓶检测方法[J]. 计算机与现代化, 2024, 0(11): 113-120. |
[5] | 杨庆五, 罗小辉, 刘鑫. 基于Edge Drawing的工业图像圆检测算法[J]. 计算机与现代化, 2024, 0(11): 121-126. |
[6] | 周安达, 唐超颖. 雨天道路场景语义分割算法及其移动端部署[J]. 计算机与现代化, 2024, 0(10): 7-13. |
[7] | 杨骏1, 胡为1, 朱文福2. 基于改进MobileNetV3的视觉SLAM回环检测算法[J]. 计算机与现代化, 2024, 0(10): 21-26. |
[8] | 魏学诚1, 江凌云1, 李研2, 何非2. 改进YOLOv5的路侧单目视角小目标检测算法[J]. 计算机与现代化, 2024, 0(10): 27-34. |
[9] | 张泽1, 张建权2, 3, 周国鹏2, 3. 基于改进YOLOv8s的摄像头模组缺陷检测[J]. 计算机与现代化, 2024, 0(09): 107-113. |
[10] | 程亚子1, 雷亮1, 2, 陈瀚1, 赵毅然1. 基于转置注意力的多尺度深度融合单目深度估计[J]. 计算机与现代化, 2024, 0(09): 121-126. |
[11] | 王梦溪, 李峻. 老年人跌倒检测技术研究综述[J]. 计算机与现代化, 2024, 0(08): 30-36. |
[12] | 马永, 王俊, 张子健, 赵煜阳, 张靖, 周明. 面向智慧运维系统的改进YOLOv8行为检测算法[J]. 计算机与现代化, 2024, 0(08): 43-48. |
[13] | 郑尚坡1, 陈德富1, 李坚利2, 林国贤2, 王星平3. 基于改进YOLOv5s和DeepSORT的行人跟踪算法[J]. 计算机与现代化, 2024, 0(08): 54-58. |
[14] | 王鑫, 余磊. 多尺度双注意力的图像超分辨率重建方法[J]. 计算机与现代化, 2024, 0(08): 77-87. |
[15] | 徐新爱, 李钢. 基于DCGAN的课堂表情图像生成方法[J]. 计算机与现代化, 2024, 0(08): 88-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||