计算机与现代化 ›› 2025, Vol. 0 ›› Issue (10): 89-95.doi: 10.3969/j.issn.1006-2475.2025.10.014

• 算法设计与分析 • 上一篇    下一篇

基于改进TimesNet模型的农产品价格预测方法

  


  1. (1.北京信息科技大学商务智能研究所,北京 100192; 2.北京信息科技大学计算机学院,北京 100192;
    3.北京信息科技大学信息管理学院,北京 100192)
  • 出版日期:2025-10-27 发布日期:2025-10-28
  • 作者简介:作者简介:王饮冰(1998—),男,河北沧州人,硕士研究生,研究方向:时序预测,E-mail: 1934482121@qq.com; 通信作者:王兴芬(1968—),女,山东平度人,二级教授,博士,研究方向:大数据及商务分析,E-mail: xfwang@bistu.edu.cn; 李立博(1999—),男,河南开封人,硕士研究生,研究方向:价格预测,E-mail: lilibo1@126.com。
  • 基金资助:
      基金项目:国家重点研发计划项目(2019YFB1405003)
        

Method for Predicting Agricultural Product Prices Based on Improved TimesNet


  1. (1. Institute of Business Intelligence, Beijing Information Science & Technology University, Beijing 100192, China; 
    2. School of Computer, Beijing Information Science & Technology University, Beijing 100192, China;
    3. School of Information Management, Beijing Information Science & Technology University, Beijing 100192, China) 
  • Online:2025-10-27 Published:2025-10-28

摘要: 摘要:农产品价格预测对农业市场的稳定起着关键作用。然而,由于农产品价格受多种因素影响,表现出非线性、周期性等特征,使得农产品价格难以准确预测。为了解决这个问题,本文提出一种新的农产品价格预测模型EMD-ConvNeXtV2-TimesNet。该模型在TimesNet模型的基础上进行了2项创新:首先创新性地引入了经验模态分解(EMD)模块,用于分解原始价格序列,从而更好地捕捉价格序列的内在结构信息;其次将TimesNet的图像特征提取模块改进为ConvNeXtV2 Block,以更有效地捕捉价格的周期信息。在收集的玉米、鸡蛋、大豆、花生数据集上进行了对比实验,实验结果显示,相比于DLinear、Informer、Transformer、FiLM、FEDformer这些对比模型中的最佳预测效果,平均绝对百分比误差(MAPE)和平均绝对误差(MAE)分别降低了38.902%/38.562%、33.183%/33.108%、39.471%/35.178%、48.525%/47.806%。新模型取得了显著的精度提升。消融实验进一步验证了EMD模块和ConvNeXtV2 Block在模型中的互补作用,相比于原始的TimesNet更有效地降低了价格预测误差。


关键词: 关键词:价格预测, 农产品, TimesNet, EMD, ConvNeXtV2

Abstract:
Abstract: Predicting agricultural product prices plays a key role in stabilizing the agricultural market. However, due to the influence of various factors, agricultural product prices exhibit characteristics such as non-linearity and periodicity, making it difficult to accurately predict. To solve this problem, a new agricultural product price prediction model, EMD-ConvNeXtV2-TimesNet, is proposed. The model introduces two innovations based on the TimesNet model: first, it innovatively incorporates an Empirical Mode Decomposition (EMD) module to decompose the original price series, thereby better capturing the intrinsic structural information of the price series; second, it improves the image feature extraction module of TimesNet to a ConvNeXtV2 Block to more effectively capture the cyclical information of prices. Comparative experiments were conducted on the collected datasets of corn, eggs, soybeans, and peanuts. The experimental results show that compared with the best prediction results of comparison models such as DLinear, Informer, Transformer, FiLM, FEDformer, the Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE) are reduced by 38.902%/38.562%, 33.183%/33.108%, 39.471%/35.178%, and 48.525%/47.806% respectively. The new model has achieved significant accuracy improvements. Ablation experiments further confirmed the complementary role of the EMD module and ConvNeXtV2 Block in the model, which more effectively reduces the price prediction error compared to the original TimesNet.

Key words: Key words: price prediction, agricultural products, TimesNet, EMD, ConvNeXtV2

中图分类号: