计算机与现代化 ›› 2025, Vol. 0 ›› Issue (10): 80-88.doi: 10.3969/j.issn.1006-2475.2025.10.013

• 算法设计与分析 • 上一篇    下一篇

改进的FA-BP神经网络的交通流预测算法

  


  1. (南京邮电大学通信与信息工程学院,江苏 南京 210023)
  • 出版日期:2025-10-27 发布日期:2025-10-28
  • 作者简介: 作者简介:王远锐(1998—),男,四川成都人,硕士研究生,研究方向:智能交通,E-mail: 774687189@qq.com; 江凌云(1971—),女,安徽安庆人,副教授,硕士,研究方向:下一代网络,E-mail: jiangly@njupt.edu.cn。
  • 基金资助:
    基金项目:江苏省重点研发项目(BE2020084-4)
      

Improved FA-BP Neural Network Traffic Flow Prediction Algorithm


  1. (College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, 
    Nanjing 210023, China)
  • Online:2025-10-27 Published:2025-10-28

摘要: 摘要:交通流预测是智能交通系统中提高效率和减少拥堵的重要技术手段之一。针对现有交通流预测算法中存在的收敛速度慢和预测精度低的问题,本文提出一种改进萤火虫优化算法(Firefly Algorithm, FA)和列文伯格-马夸尔特 (Levenberg-Marquardt, LM)算法的BP神经网络交通流预测方法。该方法利用改进的混沌萤火虫算法优化BP神经网络的初始权值和阈值,并且在权重更新阶段采用LM算法代替传统的梯度下降法,加速收敛过程并提高模型精度,最后利用LM-FA-BP算法对交通流进行预测。基于真实的复杂城市交通数据,通过实验对多个融合模型进行比较,本文模型的预测误差较其他模型显著降低,其中在平均绝对误差指标上相较于BP模型提升了33.84%,相较于FA-BP模型提升了29.82%。该模型在实际道路上进行了测试和实现,最大准确率达到98%(平均绝对百分比误差<2.0%),达到了较高的水平。改进后的LM-FA-BP模型在交通流预测中具有更高的精度和更快的收敛速度。研究结果表明,该模型具有广阔的应用前景,尤其在智能交通系统中可有效提升预测精度。


关键词: 关键词:交通流预测, 神经网络, 萤火虫算法, Levenberg-Marquardt算法

Abstract: Abstract: Traffic flow prediction is one of the important technical means to improve efficiency and reduce congestion in intelligent transportation systems. A BP neural network traffic flow prediction method based on improved Firefly Algorithm (FA) and Levenberg Marquardt (LM) algorithm is proposed to address the problems of slow convergence speed and low prediction accuracy in existing traffic flow prediction algorithms. This method utilizes an improved chaotic Firefly Algorithm to optimize the initial weights and thresholds of the BP neural network, and uses the LM algorithm instead of the traditional gradient descent method in the weight update stage to accelerate the convergence process and improve model accuracy. Finally, the LM-FA-BP algorithm is used to predict traffic flow. Based on real complex urban traffic data, multiple fusion models were compared through experiments. The prediction error of our model was significantly reduced compared to other models, with a 33.84% improvement in Mean Absolute Error (MAE) compared to the BP model and a 29.82% improvement compared to the FA-BP model. The model has been tested and implemented on actual roads, with a maximum accuracy of 98% (average absolute percentage error<2.0%), reaching a high level. The improved LM-FA-BP model has higher accuracy and faster convergence speed in traffic flow prediction. The research results indicate that the model has broad application prospects, especially in intelligent transportation systems where it can effectively improve prediction accuracy.

Key words: Key words: traffic flow prediction, neural networks, firefly algorithm, Levenberg-Marquardt algorithm

中图分类号: