计算机与现代化 ›› 2025, Vol. 0 ›› Issue (08): 104-114.doi: 10.3969/j.issn.1006-2475.2025.08.015

• 算法设计与分析 • 上一篇    下一篇

基于分层的双关联多目标进化算法

  



  1. (西安工程大学计算机科学学院,陕西 西安 710600)
  • 出版日期:2025-08-27 发布日期:2025-08-28
  • 作者简介: 作者简介:通信作者:王荣晨(1997—),男,河北保定人,硕士研究生,研究方向:多目标优化,E-mail: 944538608@qq.com; 刘俊华(1988—),女,山西忻州人,副教授,研究方向:多目标优化,E-mail: liujunhua@xpu.edu.cn。
  • 基金资助:
    基金项目:国家自然科学基金资助项目(62202366); 西安市重大科技成果转化产业化项目(23CGZHCYH0008)
       

Two Level Double Association-Based Evolutionary Algorithm for Multi-Objective Optimization


  1. (School of Computer Science, Xi’an Polytechnic University, Xi’an 710600, China)
  • Online:2025-08-27 Published:2025-08-28

摘要:
摘要:本文提出基于分层的双关联多目标进化算法(T-DAEA)解决多目标优化问题随着目标数增多带来的维数灾难。提出的基于角度的双关联策略考虑了空子空间,并将其与适配度最高的解关联起来,增加了探索未知区域的概率。此外,设计了一种新的质量评估方案来量化子空间中每个解的质量,首先测量每个解的收敛性和多样性,然后设计动态惩罚系数,通过惩罚解的全局多样性分布及目标数来动态平衡收敛性和多样性,并将完成评估的解进行自适应的分层排序,保证选取最优秀的解。所提出的算法T-DAEA的性能经过验证,并与4种先进的多目标进化算法在许多众所周知的基准问题(多达20个目标)上进行了比较。实验结果表明,该算法在收敛性增强和多样性维持方面都具有很强的竞争力。 



关键词: 关键词:多目标优化, 分层, 双关联, 收敛性, 多样性

Abstract:
Abstract: In this paper, Two level Double Association-based Evolutionary Algorithm for multi-objective optimization(T-DAEA) is proposed to solve the curse of dimensionality in multi-objective optimization problem as the number of objectives increases. The proposed angle-based bi-association strategy considers the empty subspace and associates it with the solution with the highest fitness, increasing the probability of exploring unknown regions. In addition, a new quality assessment scheme is designed to quantify the quality of each solution in the subspace by first measuring the convergence and diversity of each solution, then designing dynamic penalty coefficients to balance the convergence and diversity by penalizing the global diversity distribution of the solutions, and performing an adaptive hierarchical ordering of the solutions that have completed the assessment to ensure the selection of the best solution. The performance of the proposed algorithm, T-DAEA, is validated and compared with four state-of-the-art multi-objective evolutionary algorithms on a number of well known benchmark problems (up to 20 objectives). Experimental results show that the algorithm is highly competitive in terms of both convergence enhancement and diversity maintenance. 

Key words: Key words: multi-objective optimization, hierarchical, bicorrelation, convergence, diversity

中图分类号: