计算机与现代化 ›› 2025, Vol. 0 ›› Issue (08): 115-118.doi: 10.3969/j.issn.1006-2475.2025.08.016

• 算法设计与分析 • 上一篇    下一篇

联合距离和密度的5G终端信令离群检测算法

  


  1. (1.国网电力科学研究院有限公司/南京南瑞信息通信科技有限公司,江苏 南京 210003; 2.国家电网有限公司,北京 100031;
    3.国网山东省电力公司电力科学研究院,山东 济南 250003)
  • 出版日期:2025-08-27 发布日期:2025-08-28
  • 作者简介: 作者简介:韦小刚(1983—),男,江苏泰州人,正高级工程师,硕士,研究方向:电力系统信息网络安全,E-mail: andrew_wee@163.com; 梅文明(1983—),男,高级工程师,博士,研究方向:电力系统信息网络安全; 胡游君(1981—),男,高级工程师,硕士,研究方向:电力信息化; 屠正伟(1984—),男,高级工程师,硕士,研究方向:电力系统信息网络安全; 王睿(1991—),男,高级工程师,博士,研究方向:电力系统信息网络。
  • 基金资助:
    基金项目:国家电网有限公司总部科技项目(5700-202316291A-1-1-ZN)
      

5G Terminal Signaling Outlier Detection Algorithm Based on Joint Distance and Density


  1. (1. State Grid Electric Power Research Institute/NARI Information & Communication Technology Co., Ltd., Nanjing 210003, China; 2. State Grid Corporation of China, Beijing 100031, China;
    3. State Grid Shandong Electric Power Research Institute, Ji’nan 250003, China) 
  • Online:2025-08-27 Published:2025-08-28

摘要:
摘要:为快速、准确地对5G终端信令的异常行为进行检测,本文提出联合距离和密度的5G终端信令离群检测算法。首先对软件采集到的5G信令终端数据进行预处理,降低数据样本的维度;然后,当降维后的数据样本数量小于1000时,采用基于平均距离的KNN离群检测算法对数据样本进行离群点检测;当数据样本数量大于等于1000时,采用基于密度的COF离群检测算法进行离群点检测。仿真结果表明,本文提出的算法在准确率、精确率和召回率方面均优于传统的基准算法,并且响应时间更快。

 

关键词: 关键词:5G终端信令, 离群检测, 准确率, 精确率, 召回率

Abstract:
Abstract: In order to quickly and accurately detect the abnormal behavior of 5G terminal signaling, this paper proposes a 5G terminal signaling outlier detection algorithm based on joint distance and density. Initially, preprocessing is applied to the 5G terminal signaling data collected by software to reduce the dimensionality of the data samples. When the number of data samples is less than 1000 after dimensionality reduction, the KNN outlier detection algorithm based on average distance is used to detect the outlier points of the data samples; when the number of data samples is greater than or equal to 1000, the COF outlier detection algorithm based on density is used to detect the outlier points. Simulation results show that the algorithm proposed in this paper outperforms the traditional benchmark algorithm in terms of accuracy, precision, and recall, and has a faster response time.

Key words: Key words: 5G terminal signaling, outlier detection, accuracy rate, precision rate, recall rate

中图分类号: