计算机与现代化 ›› 2025, Vol. 0 ›› Issue (01): 30-36.doi: 10.3969/j.issn.1006-2475.2025.01.006

• 人工智能 • 上一篇    下一篇

基于低秩张量分解与加权组稀疏的高光谱图像去噪

 

  

  1. (1.长春理工大学数学与统计学院,吉林 长春130022; 2.长春理工大学中山研究院遥感技术与大数据分析实验室,广东 中山 528437)
  • 出版日期:2025-01-27 发布日期:2025-01-27
  • 基金资助:
    国家自然科学基金资助项目(12171054); 吉林省教育厅科学技术研究项目(JJKH20230788KJ)

Hyperspectral Image Denoising Using Low Rank Tensor Decomposition and Weighted Group Sparse Regularization

  1. (1.College of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130022, China;
    2. Laboratory of Remote Sensing Technology and Big Data Analysis, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China)
  • Online:2025-01-27 Published:2025-01-27

摘要: 高光谱图像在环境监测、遥感科学和医学影像等领域具有重要的参考价值。由于图像采集设备的局限性与天气恶劣等原因,高光谱图像成像过程存在复杂混合噪声污染问题,从而造成图像质量下降。针对上述问题,本文提出一种基于低秩张量分解与加权组稀疏的高光谱图像去噪模型。首先,为了有效保留高光谱图像的边缘信息并提取稀疏结构特征,提出基于[l2,1]范数的组稀疏正则化方法,来对空间与光谱方向上的差分图像进行加权约束。其次,提出[l1]范数与Frobenius范数相结合方法,以消除图像中的线性与非线性复杂混合噪声,提高图像质量。最后,利用交替方向乘子法对本文模型进行求解。本文基于模拟数据和真实数据对模型进行实验,结果表明本文模型相对于基准模型在不同评价指标上均具有较好的提升,且在高光谱图像恢复上具有明显优越性。

关键词: 高光谱图像, 图像去噪, 组稀疏, 混合噪声, 交替方向乘子法

Abstract:  Hyperspectral images have significant reference value in fields such as environmental monitoring, remote sensing science, and medical imaging. However, the imaging process is susceptible to contamination by mixed noise due to limitations in the imaging acquisition equipment and adverse weather conditions, leading to a significant decline in image quality. To tackle this problem, we propose a denoising model for hyperspectral images based on low rank tensor decomposition and weighted group sparsity-regularized. Specifically, to effectively retain the edge information of the hyperspectral image and extract sparse structural features, we propose a group sparse regularization method based on the [l2,1] norm, which aims to weight and constrain the differential images in the spatial and spectral directions. Then, a combined approach is proposed, which utilizes the [l1] norm and Frobenius norm, to effectively eliminate complex mixed noise in the images, thereby enhancing the overall image quality. Furthermore, we use ADMM algorithm to solve the model proposed in this paper. Experimental evaluations of the model are conducted using both simulated and real data, and the results demonstrate the superiority of the proposed model over the baseline model in terms of various evaluation metrics, particularly the proposed model has obvious advantages in hyperspectral image recovery.

Key words: hyperspectral images, image denoising, group sparsity, mixed noise, alternating direction method of multiplier

中图分类号: