计算机与现代化 ›› 2025, Vol. 0 ›› Issue (01): 25-29.doi: 10.3969/j.issn.1006-2475.2025.01.005

• 人工智能 • 上一篇    下一篇

基于国产AI芯片的目标检测算法优化与部署


  

  1. (1.武汉大学物理科学与技术学院,湖北 武汉 430072; 2.湖北航天飞行器研究所,湖北 武汉 430040)
  • 出版日期:2025-01-27 发布日期:2025-01-27
  • 基金资助:
    国家自然科学基金面上项目(62074116); 武汉市知识创新专项(2023010201010077); 武汉市重点研发计划项目(2023010402010597); 武汉大学珞珈青年学者基金资助项目

Optimization and Deployment of Object Detection Algorithm Based on Domestic AI Chips

  1. (1. School of Physics and Technology, Wuhan University, Wuhan 430072, China;
    2. Hubei Aerospace Vehicle Research Institute, Wuhan 430040, China)
  • Online:2025-01-27 Published:2025-01-27

摘要: 目前各类神经网络已经逐步在社会的各个方面得到广泛应用,神经网络模型的性能很大程度上取决于其训练策略的优劣,其落地部署也离不开相应硬件平台的支持,而为了保障当前形势下我国的信息安全和电子信息产业发展,相关国产AI芯片的替代迫在眉睫。本文以国产AI芯片替代为出发点,基于全爱QA-200RC开发套件,探究在国产平台上的神经网络算法部署流程,针对特定任务需求进行YOLOv6神经网络训练和主机程序的优化,在通过摄像头进行实时检测的情况下,实现对火箭残骸的目标检测,帧率达30 FPS,mAP_0.5为90.1%,功耗为8.1 W,满足了边缘平台上完成目标检测任务的需求,对促进国产芯片在相关领域的应用具有一定作用。

关键词: 目标检测, 神经网络, 模型训练, AI芯片, 国产化, 硬件平台, Python

Abstract:  At present, various types of neural networks have gradually been widely applied in all aspects of society. The performance of neural network models largely depends on the quality of their training strategies, and their deployment cannot be separated from the support of corresponding hardware platforms. In order to ensure the information security and development of the electronic information industry in China under the current situation, it is urgent to replace relevant domestic AI chips. Taking the replacement of domestic AI chips as the starting point, this article explores the deployment process of neural network algorithms on domestic platforms based on the Quanai QA-200RC development kit. The improvement of YOLOv6 neural network training and host program optimization are carried out according to specific task requirements. With real-time detection through cameras, target detection of rocket debris is achieved, the frame rate is 30 FPS, the mAP_0.5 is 90.1%, and the power consumption is 8.1 W, which meets the requirements for completing object detection tasks on edge platforms and is helpful for promoting the application of domestic chips in related fields.

Key words: target detection, neural network, model training, AI chip, localization, hardware platform, Python

中图分类号: