计算机与现代化 ›› 2025, Vol. 0 ›› Issue (01): 37-43.doi: 10.3969/j.issn.1006-2475.2025.01.007

• 人工智能 • 上一篇    下一篇

基于属性异质图的多目标对抗跨领域推荐



  


  1. (西南交通大学计算机与人工智能学院,四川 成都 611756)
  • 出版日期:2025-01-27 发布日期:2025-01-27
  • 基金资助:
    四川省科技计划项目(2019YFSY0

Multi-Target Adversarial Cross-domain Recommendation Based on Attributed Heterogeneous Graph

  1. (School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China)
  • Online:2025-01-27 Published:2025-01-27

摘要: 跨领域推荐常用于解决推荐系统中的冷启动与数据稀疏问题,然而现有的方法往往假设用户在不同领域中的喜好是相似的,基于这一假设进行推荐忽略了用户偏好的异质性,无法达到最优推荐性能。此外,现有的方法主要关注领域对之间的推荐任务,无法自然地扩展为多领域的推荐。本文提出一种基于属性异质图的多目标对抗跨领域推荐(Multi-target Adversarial Cross-domain Recommendation based on Attributed Heterogeneous Graph, MAAH)方法,利用属性异质图结构表征用户与项目,捕获领域间用户行为的同质性与异质性;结合对抗学习进一步融合与区分用户偏好,使每个领域的推荐效果同时提升,实现多目标的跨领域推荐。在公开的数据集上进行实验,结果表明该方法缓解了数据稀疏,可以进一步解决冷启动问题。

关键词: 推荐系统, 跨领域, 属性异质图, 图嵌入, 对抗学习

Abstract: Cross-domain recommendation technique plays a crucial role in addressing the challenges of cold start and data sparsity in recommendation systems. However, existing methods often make the simplifying assumption that users’ preferences remain consistent across different domains. This assumption overlooks the inherent heterogeneity of user preferences, resulting in suboptimal recommendation performance. Furthermore, most approaches focus solely on recommendation tasks between domains, lacking a natural extension to multi-domain scenarios. In this spaper, we propose a novel approach called MAAH(Multi-Target Adversarial Cross-domain Recommendation based on Attributed Heterogeneous Graph). The method leverages the structural information encoded in an attributed heterogeneous graph to represent users and items. By capturing both the homogeneity and heterogeneity of user behavior across domains, MAAH provides a more comprehensive understanding of user preferences. Importantly, we introduce adversarial learning to further integrate and discriminate user preferences, thereby enhancing recommendation effectiveness in each domain. Notably, MAAH achieves multi-objective cross-domain recommendation, addressing the limitations of existing methods. Experimental results on publicly available datasets demonstrate that MAAH effectively mitigates data sparsity and offers a promising solution to the cold start problem in cross-domain recommendation scenarios. 

Key words: recommendation system, cross-domain, attribute heterogeneity graph, graph embedding, adversarial learning

中图分类号: