计算机与现代化 ›› 2024, Vol. 0 ›› Issue (03): 34-40.doi: 10.3969/j.issn.1006-2475.2024.03.006

• 人工智能 • 上一篇    下一篇

基于知识图谱的多目标可解释性推荐

  



  1. (上海理工大学理学院,上海 200093)
  • 出版日期:2024-03-28 发布日期:2024-04-28
  • 作者简介:杨孟(1999—),男,湖北襄阳人,硕士研究生,研究方向:推荐系统,E-mail: 2462233498@qq.com; 通信作者:杨进(1978—),女,讲师,硕士生导师,博士,研究方向:智能优化,图论与组合优化,E-mail: yangjin0903@163.com; 陈步前(1998—),男,山东济宁人,硕士研究生,研究方向:人工智能,E-mail: 945028872@qq.com。
  • 基金资助:
    国家自然科学基金资助项目(12071293)

Multiple Objective Explainable Recommendation Based on Knowledge Graph

  1. (School of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)
  • Online:2024-03-28 Published:2024-04-28

摘要:
摘要:现有的推荐系统研究大多集中在如何提高推荐的精度上,而忽略了推荐的可解释性。为了最大程度地提高用户对推荐项的满意度,提出一种基于知识图谱的多目标可解释性推荐模型,同时优化推荐的准确性、新颖性、多样性和可解释性。首先通过知识图谱得到用户可解释的候选列表,并利用统一的方法以目标用户的交互项和推荐项之间的路径作为解释依据对推荐的可解释性进行量化,最后通过多目标优化算法对可解释的候选列表进行优化,得到最终的推荐列表。在Movielens和Epinions数据集上的实验结果表明,本文所提出的模型可以在不降低准确性、新颖性和多样性的情况下提高推荐的可解释能力。



关键词: 关键词:知识图谱, 推荐系统, 可解释性, 多目标优化

Abstract: Abstract: Most of the existing recommendation system research focuses on how to improve the accuracy of recommendation, but neglects the explainability of recommendation. In order to maximize the satisfaction with recommendation items of users, a multi-objective explainable recommendation model based on knowledge graph is proposed to optimize the accuracy, novelty, diversity and explainability of recommendations. Firstly, the explainable candidate list of users is obtained by knowledge graph, and the explainable candidate list is quantified by using a unified method based on the path between the interaction item and the recommendation item of target users. Finally, the explainable candidate list is optimized by multi-objective optimization algorithm, and the final recommendation list is obtained. The experimental results on the dataset of Movielens and Epinions show that the proposed model can improve the explainability of recommendations without compromising accuracy, novelty, and diversity.

Key words: Key words: knowledge graph, recommendation system, explainability, multi-objective optimization

中图分类号: