[1] 李书宁. 互联网信息环境中信息超载问题研究[J]. 情报科学, 2005,23(10):1587-1590.
[2] 邹裕,肖倩,吴树荣. 基于增强关联规则挖掘的大型网站推荐系统[J]. 计算机与现代化, 2016(10):30-34.
[3] BALABANOVI〖XCC.TIF,JZ〗 M, SHOHAM Y. Fab: Content-based, collaborative recommendation[J]. Communication of the ACM, 1997,40(3):66-72.
[4] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013,46:109-132.
[5] AL-SHAMRI M Y H. User profiling approaches for demographic recommender systems[J]. Knowledge-Based Systems, 2016,100:175-187.
[6] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// International Conference on World Wide Web. ACM, 2001:285-295.
[7] 杨秀萍. 融合用户评分和属性相似度的协同过滤推荐算法[J]. 计算机与现代化, 2017(7):16-19.
[8] LU Z Q, PAN S J, LI Y, et al. Collaborative evolution for user profiling in recommender systems[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016:3804-3810.
[9] CAAMARES R, CASTELLS P. A probabilistic reformulation of memory-based collaborative filtering: Implications on popularity biases[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017:215-224.
[10]SARWAR B, KARYPIS G, KONSTAN J, et al. Application of Dimensionality Reduction in Recommender System——A Case Study[R]. Minnesota Univ Minneapolis Dept of Computer Science, 2000.
[11]SALAKHUTDINOV R R,MNIH A. Probabilistic matrix factorization[C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. 2007:1257-1264.
[12]HERNANDO A, BOBADILLA J, ORTEGA F. A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model[J]. Knowledge-Based Systems, 2016,97:188-202.
[13]KOREN Y. Collaborative filtering with temporal dynamics[J]. Communications of the ACM, 2010,53(4):89-97.
[14]KOREN Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]// ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2008:426-434.
[15]ZAHRA S, GHAZANFAR M A, KHALID A, et al. Novel centroid selection approaches for KMeans-clustering based recommender systems[J]. Information Sciences, 2015,320:156-189.
[16]ROH T H, OH K J, HAN I. The collaborative filtering recommendation based on SOM cluster-indexing CBR[J]. Expert Systems with Applications, 2003,25(3):413-423.
[17]YAGER R R. Fuzzy logic methods in recommender systems[J]. Fuzzy Sets and Systems, 2003,136(2):133-149.
[18]BIRTOLO C, RONCA D. Advances in clustering collaborative filtering by means of fuzzy C-means and trust[J]. Expert Systems with Applications, 2013,40(17):6997-7009.
[19]SUN Z B, HAN L X, HUANG W L, et al. Recommender systems based on social networks[J]. Journal of Systems and Software, 2015,99(C):109-119.
[20]MORADI P, AHMADIAN S, AKHLAGHIAN F. An effective trust-based recommendation method using a novel graph clustering algorithm[J]. Physica A: Statistical Mechanics and ITS Applications, 2015,436:462-481.
[21]LIU X J. An improved clustering-based collaborative filtering recommendation algorithm[J]. Cluster Computing, 2017,20(2):1281-1288.
[22]王艳,王移芝. 融合信任关系的协同过滤推荐算法改进研究[J]. 计算机与现代化, 2016(12):7-11.
[23]BOBADILLA J, SERRADILLA F, BERNAL J. A new collaborative filtering metric that improves the behavior of recommender systems[J]. Knowledge-Based Systems, 2010,23(6):520-528.
[24]PIRASTEH P, HWANG D, JUNG J E. Weighted similarity schemes for high scalability in user-based collaborative filtering[J]. Mobile Networks & Applications, 2015,20(4):497-507.
[25]LIU H F, HU Z, MIAN A, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge-Based Systems, 2014,56:156-166.
[26]HASAN M, AHMED S, MALIK M A I, et al. A comprehensive approach towards user-based collaborative filtering recommender system[C]// IEEE International Workshop onComputational Intelligence (IWCI). 2016:159-164.
[27]KIM S, KIM H, MIN J K. An efficient parallel similarity matrix construction on MapReduce for collaborative filtering[J]. The Journal of Supercomputing, 2019,75(1):123-141. |