计算机与现代化 ›› 2023, Vol. 0 ›› Issue (05): 93-99.

• 图像处理 • 上一篇    下一篇

基于双分支特征拼接的行人重识别

  

  1. (1.贵州民族大学数据科学与信息工程学院,贵州 贵阳 550025; 2.贵州省模式识别与智能系统重点实验室,贵州 贵阳 550025)
  • 出版日期:2023-06-06 发布日期:2023-06-06
  • 作者简介:潘凤(1996—),女,贵州遵义人,硕士研究生,研究方向:统计建模与模式识别,E-mail: 172408874@qq.com; 王杰(1998—),男,贵州习水人,硕士研究生,研究方向:统计建模与模式识别,E-mail: 939284639@qq.com; 张艳莎(1997—),女,贵州习水人,硕士研究生,研究方向:统计建模与模式识别,E-mail: 1638292011@qq.com; 谭棉(1984—),女,高级实验师,硕士,研究方向:统计建模与模式识别,智能计算,E-mail: tanmian@gzmu.edu.cn; 何兴(1986—),男,贵州贵阳人,实验师,博士研究生,研究方向:人工智能安全,密码学,E-mail: 1031869687@qq.com; 通信作者:王林(1965—),男,贵州贵阳人,教授,博士,研究方向:计算机数字图像处理,模式识别,E-mail: wanglin@gzmu.edu.cn。
  • 基金资助:
    贵州省科技计划项目(黔科合基础-ZK[2022]一般195); 贵州民族大学自然科学基金资助项目(GZMUZK[2021]YB24); 贵州省青年科技人才成长项目(黔教合KY字[2021]104,黔教合KY字[2018]141)

Person Re-identification Based on Dual-branch Feature Concatenation

  1. (1. College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China;
    2. Key Laboratory of Pattern Recognition and Intelligent System of Guizhou Province, Guiyang 550025, China)
  • Online:2023-06-06 Published:2023-06-06

摘要: 针对不同监控视觉的拍摄,行人重识别任务存在类内(同一行人)前后变化大被误判、类间(相似行人)模糊造成区分度低的问题,提出一种双分支特征拼接的行人重识别方法(Dual-branch Feature Concatenation Network, DFCNet)。该方法通过对网络的深度特征进行拼接,使特征信息互补,获得辨别性特征,并用批归一化层代替基础网络全局平均池化层后的全连接层,使用标签平滑交叉熵损失函数训练网络,解决类内变化大及类间模糊造成提取特征辨别性差的问题。为验证所建议方法的有效性,在Market1501、DukeMTMC-reID公开数据集上进行验证,其中在Market1501数据集上,Rank-1和mAP指标分别达到95.8%和94.3%。结果表明所建议方法在处理类内误判与类间难区分问题上具有良好性能,且识别精度优于对比的流行算法。

关键词: 模式识别, 行人重识别, 特征提取, 双分支特征拼接

Abstract: For the shooting of different monitoring vision, the person re-identification task is greatly misjudged within the intra-class (the same person), and the ambiguity inter-class (similar persons) causes low differentiation. A method (Dual-branch Feature Concatenation Network, DFCNet) that integrates depth features is proposed in this paper, the deep features of the network are assembled to complement the feature information and obtain discrimination feature, and the BN layer replaces the full connection layer after the global average pooling layer of backbone network, the network is trained with label smoothing cross-entropy loss function, which solves the problem of within the intra-class changes and the ambiguity inter-class with low differentiation. To verify the effectiveness of the proposed method, the validation was performed on the Market1501, DukeMTMC-reID public datasets, which Rank-1 and mAP can reach 95.8% and 94.3% on Market1501. The proposed method has good performance in dealing with intra-class miscalculation and inter-class difficulty discrimination, and the recognition accuracy outperforms the state-of-the-art algorithms of comparison.

Key words: pattern recognition, person re-identification, feature extraction, double-branch feature concatenation