计算机与现代化 ›› 2023, Vol. 0 ›› Issue (03): 96-101.

• 数据库与数据挖掘 • 上一篇    下一篇

基于分解和多分量集成学习的负荷预测方法

  

  1. (上海师范大学信息与机电工程学院,上海 201418)
  • 出版日期:2023-04-17 发布日期:2023-04-17
  • 作者简介:张子森(1994—),男,安徽临泉人,硕士研究生,研究方向:人工智能数据挖掘,E-mail: zhang.zisen@outlook.com;徐晓钟(1964—),男,高级工程师,研究方向:人工智能数据挖掘,计算机软件架构设计,E-mail: xxz_edu@shnu.edu.cn。
  • 基金资助:
    上海市科委项目(115105024)

Load Forecasting Based on Decomposition and Multi-component Ensemble Learning

  1. (College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China)
  • Online:2023-04-17 Published:2023-04-17

摘要: 能源负荷时间序列具有周期波动性和增长性两重趋势。一般梯度提升树GBDT通过集成多个分类与回归树CART,能够很好地拟合周期波动性趋势,但是对于增长性趋势拟合较差。相关研究先分解再使用组合模型预测,而本文研究在分解后使用多分量集成学习进行预测。首先分解出负荷的2种趋势分量及残差分量,将CART的叶节点改为3个预测模型,使其能够对3个分量进行预测。同时优化CART损失函数为各分量预测结果的误差平方总和,使其能够考虑3个分量预测模型的损失。然后基于梯度提升重构预测结果,使其能够以多分量集成学习的方式拟合负荷的两重趋势。最后提出基于分解和多分量集成学习的负荷预测方法,该方法在某地区电力负荷预测实验中,相比其它预测方法,各项误差评价指标均有所下降。实验结果表明,本文提出的方法在两重趋势性负荷的预测中具有更好的表现,同时也为GBDT预测其它类型数据提供了改进思路。

关键词: 负荷时间序列, STL分解, 梯度提升树, 多分量预测, 负荷预测

Abstract: The time series of energy load has a dual trend of periodic fluctuation and growth. By integrating multiple classification and regression trees(CART), the existing gradient boosting tree(GBDT) can well fit the periodic fluctuation trend, but it is poor for the growth trend. The related researches decompose the load first, and then use the combined model for prediction. This paper studies the prediction using multi-component ensemble learning after decomposition. Firstly, the two trend components and residual components of load are decomposed, and the leaf node of CART is changed into three prediction models, so that it can predict the three components. At the same time, the CART loss function is optimized as the sum of the square errors of the prediction results of each component, so that it can consider the loss of the three component prediction models. Then, the prediction results are reconstructed based on gradient boosting, so that it can fit the dual trend of load in the way of multi-component ensemble learning. Finally, a load forecasting method based on decomposition and multi-component ensemble learning is proposed. In a regional power load forecasting experiment, compared with other forecasting methods, the error evaluation values of the proposed method are reduced. The results of experiments show that in the prediction of double trend load, the method proposed in this paper has better performance, and also provides an improvement for GBDT to predict other types of data.

Key words: load time series, STL decomposition, gradient boosting decision tree, multi-component prediction, load forecasting