[1] 邵超,宋淑米. 基于信任关系下用户兴趣偏好的协同过滤推荐算法[J]. 计算机科学, 2021,48(S1):240-245.
[2] 俞菲,李治军,车楠,等. 一种面向获取空间信息的潜在好友推荐算法[J]. 软件学报, 2017,28(8):2148-2160.
[3] 熊慧君,宋一凡,张鹏,等. 基于深度自编码器和二次协同过滤的个性化试题推荐方法[J]. 计算机科学, 2019,46(11A):172-177.
[4] 李炎,艾均,苏湛. 结合评分时间和用户空间的协同过滤推荐算法[J]. 计算机应用与软件, 2018,35(12):247-252.
[5] HAFED Z, ZIAD A, MAHMOUD A, et al. A new collaborative filtering recommendation algorithm based on dimensionality reduction and clustering techniques[C]// 2018 9th International Conference on Information and Communication Systems (ICICS). 2018:102-106.
[6] GOU J, GUO J J, ZHANG L, et al. Collaborative filtering recommendation system based on trust-aware and domain experts[J]. Intelligent Data Analysis, 2019,23(S):133-151.
[7] 李普聪,王顺,钟元生,等. 融合信任关系的物质扩散与热传导混合推荐算法[J]. 小型微型计算机系统, 2021,42(10):2044-2052.
[8] WU C, QIU W W, ZHENG Z B, et al. QoS prediction of web services based on two-phase K-means clustering[C]// 2015 IEEE International Conference on Web Services. 2015:161-168.
[9] AHLEM K, ZAYANI C A, AMOUS I, et al. Social collaborative service recommendation approach based on user’s trust and domain-specific expertise[J]. Future Generations Computer Systems, 2018,80:355-367.
[10]ZHENG Q S. An improved collaborative filtering algorithm based on expert trust and time decay[C]// 2018 11th International Symposium on Computational Intelligence and Design (ISCID). 2018:12-15.
[11]邓存彬,虞慧群,范贵生. 融合动态协同过滤和深度学习的推荐算法[J]. 计算机科学, 2019,46(8):28-34.
[12]刘璐,王志谦. 一种改进的基于用户聚类的协同过滤推荐算法[J]. 电视技术, 2018,42(6):1-4.
[13]YAN S R, ZHENG X L, CHEN D R, et al. Exploiting two-faceted web of trust for enhanced-quality recommendations[J]. Expert Systems with Application, 2013,40(17):7080-7095.
[14]虞胜杰,熊丽荣,王玲燕. 一种融合用户偏好和信任-不信任关系的社会化推荐方法[J]. 小型微型计算机系统, 2020,41(12):2529-2535.
[15]刘国丽,白晓霞,廉孟杰,等. 基于专家信任的协同过滤推荐算法改进研究[J]. 计算机工程与科学, 2019,41(10):1846-1853.
[16]景民昌,唐弟官,于迎辉. 基于专家信任优先的协同过滤推荐算法[J]. 图书情报工作, 2012,56(11):105-108.
[17]WANG X Y, ZHU J K, ZHENG Z B, et al. A spatial-temporal QoS prediction approach for time-aware web service recommendation[J]. ACM Transactions on the Web, 2016, 10(1):1-25.
[18]Naznin A, Ahmsajedul H, Rashed M. Accuracy analysis of recommendation system using singular value decomposition[C]// 2016 19th International Conference on Computer and Information Technology.2016:405-408.
[19]王粤,黄俊,郑小楠,等. 基于用户兴趣和评分差异的改进混合推荐算法[J]. 计算机工程与设计, 2021,42(10):2830-2836.
[20]XU C, CUI G C. Collaborative filtering and leaders’ advice based recommendation system for cold start users[C]// 2020 6th International Conference on Computing and Artificial Intelligence(ICCAI). 2020:158-164.
[21]MA W P, XIANG F, WANG S F, et al. Personalized recommendation based on heat bidirectional transfer[J]. Physica A Statistical Mechanics & Its Applications, 2016,444:713-721.
[22]CHE H M, XU L C. Weibo recommendation algorithm based on tag clustering and user preference[C]// 2019 11th International Conference on Measuring Technology and Mechatronics Automaion(ICMTMA). 2019:830-834.
[23]高发展,黄梦醒,张婷婷. 综合用户特征及专家信任的协作过滤推荐算法[J]. 计算机科学, 2017,44(2):103-106.
[24]王建芳,刘冉东,刘永利. 一种带偏置的专家信任推荐算法[J]. 小型微型计算机系统, 2018,39(2):287-291.
[25]WANG H X. An improved collaborative filtering recommendation algorithm[C]// 2019 the 4th IEEE International Conference on Big Data Analytics. 2019:431-435.
|