[1] 史海燕,倪云瑞. 推荐系统冷启动问题研究进展[J]. 图书馆学研究, 2021(12):2-10.
[2] RAIGOZA J, KARANDE V. A study and implementation of a movie recommendation system in a cloud-based environment[J]. International Journal of Grid and High Performance Computing, 2017,9(1):25-36.
[3] 巫可,战荫伟,李鹰. 融合用户属性的隐语义模型推荐算法[J]. 计算机工程, 2016,42(12):171-175.
[4] LIKA B, KOLOMVATSOS K, HADJIEFTHYMIADES S. Facing the cold start problem in recommender systems[J]. Expert Systems with Applications, 2014,41(4):2065-2073.
[5] PARK J Y, JOO S H, CORNILLIE F, et al. An explanatory item response theory method for alleviating the cold-start problem in adaptive learning environments[J]. Behavior Research Methods, 2019,51(2):895-909.
[6] YANG C F, ZHOU Y P, CHEN L, et al. Social-group-based ranking algorithms for cold-start video recommendation[J]. International Journal of Data Science and Analytics, 2016,1(3-4):165-175.
[7] PALETI L, KRISHNA P R, MURTHY J V R. Approaching the cold-start problem using community detection based alternating least square factorization in recommendation systems[J]. Evolutionary Intelligence, 2021,14(2):835-849.
[8] SAHEBI S, COHEN W W. Community-based recommendations: A solution to the cold start problem[C]// Proceedings of the 2011 Workshop on Recommender Systems and the Social Web (RSWEB). 2011:40-44.
[9] NGUYEN V D, SRIBOONCHITTA S, HUYNH V N. Using community preference for overcoming sparsity and cold-start problems in collaborative filtering system offering soft ratings[J]. Electronic Commerce Research and Applications, 2017,26:101-108.
[10]ZHANG Y J, SHI Z K, ZUO W L, et al. Joint personalized Markov chains with social network embedding for cold-start recommendation[J]. Neurocomputing, 2020,386:208-220.
[11]史海燕,韩秀静. 情境感知推荐系统研究进展[J]. 情报科学, 2018,36(7):163-169.
[12]于洪,李俊华. 一种解决新项目冷启动问题的推荐算法[J]. 软件学报, 2015,26(6):1395-1408.
[13]CHEN Z, SHEN L M, LI F, et al. Your neighbors alleviate cold-start: On geographical neighborhood influence to collaborative Web service QoS prediction[J]. Knowledge-Based Systems, 2017,138:188-201.
[14]VIKTORATOS I, TSADIRAS A, BASSILIADES N. Combining community-based knowledge with association rule mining to alleviate the cold start problem in context-aware recommender systems[J]. Expert Systems with Applications, 2018,101:78-90.
[15]TIAN G, WANG Q B, WANG J, et al. Leveraging contextual information for cold-start Web service recommendation[J]. Concurrency and Computation: Practice and Experience, 2019,31(17). DOI: 10.1002/cpe.5195.
[16]WANG R Q, CHENG H K, JIANG Y L, et al. A novel matrix factorization model for recommendation with LOD-based semantic similarity measure[J]. Expert Systems with Applications, 2019,123:70-81.
[17]SRINIVASAN U S, MANI C. Diversity-ensured semantic movie recommendation by applying linked open data[J]. International Journal of Intelligent Engineering and Systems, 2018,11(2):275-286.
[18]NATARAJAN S, VAIRAVASUNDARAM S, NATARAJAN S, et al. Resolving data sparsity and cold start problem in collaborative filtering recommender system using linked open data[J]. Expert Systems with Applications, 2020,149. DOI: 10.1016/j.eswa.2020.113248.
[19]莫荔媛. 基于关联数据的个性化推荐系统研究[D]. 广州:华南理工大学, 2018.
[20]刘瑞江,张业旺,闻崇炜,等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010,27(9):52-55.
[21]KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:3149-3157.
[22]FRIEDMAN J, HASTIE T, TIBSHIRANI R. Additive logistic regression: A statistical view of boosting[J]. The Annals of Statistics, 2000,28(2):337-407.
[23]CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016:785-794.
[24]刘洁. 电商大数据推荐系统中逻辑回归算法的应用[J]. 电子技术与软件工程, 2021(18):154-155.
[25]马华,王清,韩忠东,等. 决策树分类算法在个性化图书推荐中的应用[J]. 软件, 2012,33(8):100-101.
[26]沈晶磊,虞慧群,范贵生,等. 基于随机森林算法的推荐系统的设计与实现[J]. 计算机科学, 2017,44(11):164-167.
[27]张昊,纪宏超,张红宇. XGBoost算法在电子商务商品推荐中的应用[J]. 物联网技术, 2017,7(2):102-104.
[28]陈亮,汪景福,王娜,等. 基于DNN算法的移动视频推荐策略[J]. 计算机学报, 2016,39(8):1626-1638.
[29]朱颢东,陈宁,李红婵. 优化的互信息特征选择方法[J]. 计算机工程与应用, 2010,46(26):122-124.
[30]杨秋良,王钰,杨杏丽,等. 基于互信息F统计量特征选择技术的地基气象云图分类[J]. 计算机与现代化, 2021(2):18-23.
|