[1] 曾宪宇,刘淇,赵洪科,等. 用户在线购买预测:一种基于用户操作序列和选择模型的方法[J]. 计算机研究与发展, 2016,53(8):1673-1683.
[2] SILAHTAROGLU G, DONERTASLI H. Analysis and prediction of E-customers’ behavior by mining clickstream data[C]// Proceddings of 2015 IEEE International Conference on Big Data. 2015:1466-1472.
[3] 胡一. 基于大数据的电子商务个性化信息推荐服务模式研究[D]. 长春:吉林大学, 2015.
[4] 李旭阳,邵峰晶. LSTM与随机森林购买行为预测模型研究[J]. 青岛大学学报(工程技术版), 2018,33(2):17-20.
[5] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[6] 刘潇蔓. 基于特征选择和模型融合的网络购买行为预测研究[D]. 北京:北京交通大学, 2017.
[7] 付红玉. 基于异源集成算法的用户购买行为预测研究[D]. 济南:山东大学, 2020.
[8] 何龙. 深入理解XGBoost: 高效机器学习算法与进阶[M]. 北京:机械工业出版社, 2020:57-64.
[9] 周成骥. 基于机器学习的商品购买行为预测模型设计[D]. 广州:广州大学, 2018.
[10]GENG S J, ZHOU W D, YUAN Q, et al. EEG non-linear featureextraction using correlation dimension and Hurst exponent[J]. Neurological Research, 2011,33(9):908-912.
[11]胡晓丽,张会兵,董俊超,等. 基于CNN-LSTM的用户购买行为预测模型[J]. 计算机应用与软件, 2020,37(6):59-64.
[12]LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4):541-551.
[13]杜世民. 基于分类模型的电商用户复购行为预测研究[D]. 杭州:杭州师范大学, 2019.
[14]TIAN Y, YE Z L, YAN Y F, et al. A practical model to predict the repeat purchasing pattern of consumers in the C2C e-commerce[J]. Electronic Commerce Research, 2015,15(4):571-583.
[15]ZUO Y, ALI A B M S, YADA K. Consumer purchasing behavior extraction using statistical learning theory[J]. Procedia Computer Science, 2014,35:1464-1473.
[16]SMOLA A, BARTLETT P, SCHOLKOPF B, et al. Probabilities for SV Machines[M]. MIT Press, 2000.
[17]CHANG H J, HUNG L P, HO C L. An anticipation model of potential customers’ purchasing behavior based on clustering analysis and association rules analysis[J]. Expert Systems with Applications, 2007,32(3):753-764.
[18]CHO Y S, MOON S C, OH I B, et al. Incremenatal weighted mining based on RFM analysis for rommending prediction in u-commerce[J]. International Journal of Smart Home, 2013,7(6):133-144.
[19]GUPTA R, PATHAK C. A machine learning framework for predicting purchase by online customers based on dynamic pricing[J]. Procedia Computer Science, 2014,36:599-605.
[20]LIU X Y, WU J X, ZHOU Z H. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2009,39(2):539-540.
[21]阿里天池. 天池新人实战赛之[离线赛][DB/OL]. [2021-09-01]. https://tianchi.aliyun.com/competition/entrance/231522/information.
[22]张尧. 基于互信息的特征选择方法研究[D]. 西安:西安理工大学, 2019.
[23]CHEN T, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016:785-794.
[24]方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011,26(3):32-38.
[25]周志华. 机器学习[M]. 北京:清华大学出版社, 2016:171-190.
[26]MACDONALD C, OUNIS I. Voting for candidates: Adapting data fusion techniques for an expert search task[C]// Proceedings of the 15th ACM International Conference on Information and Knowledge Management. 2006:387-396.
[27]ROKACH L. Ensemble-based classifiers[J]. Artificial Intelligence Review, 2010,33(1-2):1-39.
|