[1] GUO Y H, ZHOU W J, LUO C Y, et al. Instance-based credit risk assessment for investment decisions in P2P lending[J]. European Journal of Operational Research, 2016,249(2):417-426.
[2] 李毅,姜天英,刘亚茹. 基于不平衡样本的互联网个人信用评估研究[J]. 统计与信息论坛, 2017,32(2):84-90.
[3] PHUA C, ALAHAKOON D, LEE V. Minority report in fraud detection:Classification of skewed data[J]. ACM SIGKDD Explorations Newsletter, 2004,6(1):50-59.
[4] CHAWLA N V, JAPKOWICZ N, KOTCZ A. Editorial:Special issue on learning from imblanced datasets[J]. ACM SIGKDD Explorations Newsletter, 2004,6(1):1-6.
[5] 尹超. 基于网络信贷数据的分类器构造[D]. 合肥:中国科学技术大学, 2016.
[6] BATISTA G E A P, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004,6(1):20-29.
[7] 李军. 不平衡数据学习的研究[D]. 长春:吉林大学, 2011.
[8] 李勇,刘战东,张海军. 不平衡数据的集成分类算法综述[J]. 计算机应用研究, 2014,31(5):1287-1291.
[9] 季梦遥,袁磊. 不平衡数据的随机平衡采样bagging算法分类研究[J]. 贵州大学学报(自然科学版), 2017,34(6):54-58.
[10]娄康,薛彦兵,张桦,等. 基于代价敏感深度决策树的公交车环境人脸检测[J]. 计算机应用, 2017,37(11):3152-3156.
[11]DEVI D, BISWAS S K, PURKAYASTHA B. Redundancy-driven modified Tomek-link based undersampling: A solution to class imbalance[J]. Pattern Recognition Letters, 2017,93(1):3-12.
[12]周志华. 机器学习[M]. 北京:清华大学出版社, 2016:171-196.
[13]BARUA S, ISLAM M M, MURASE K. A novel synthetic minority oversampling technique for imbalances data set learning[C]// Proceedings of the 2011 International Conference on Neural Information Processing. 2011:735-744.
[14]BUNKHUMPORNPAT C, SINAPIROMSARAN K, LURSINSAP C. Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handing the class imbalanced problem[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD). 2009:475-482.
[15]于化龙. 类别不平衡学习:理论与算法[M]. 北京:清华大学出版社, 2017:12-20.
[16]MADAN N. Providing banking loan to customers based on J48 classifier algorithm combined with neural networks[J]. IJLTEMAS, 2017,3(6):58-62.
[17]KRICHENE A. Using a naive Bayesian classifier methodology for loan risk assessment: Evidence from a Tunisian commercial bank[J]. Journal of Economics, Finance and Administrative Science, 2017,22(42):3-24.
[18]余华银,雷雅慧. 基于决策树与Logistic回归的P2P网贷平台信用风险评价比较分析[J]. 长春大学学报, 2017,27(9):13-16.
[19]HU S G, LIANG Y F, MA L T, et al. MSMOTE: Improving classification performance when training data is imbalanced[C]// IEEE 2nd International Workshop on Computer Science and Engineering(WCSE’09). 2009,2:13-17.
[20]HANSEN L K, SALAMON P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1990,12(10):993-1001.
[21]LIU X Y, WU J X, ZHOU Z H. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics (Part B), 2009,39(2):539-550.
[22]ZHANG Y L, ZHOU J, ZHENG W H, et al. Distributed Deep Forest and Its Application to Automatic Detection of Cash-out Fraud[EB/OL]. (2018-05-27). https://arxiv.org/abs/1805.04234?context=cs.LG. |