[1] 赵堪兴,杨培增. 眼科学[M]. 8版. 北京:人民卫生出版社, 2017.
[2] 高宏杰,邱天爽,丑远婷,等. 基于改进U型网络的眼底图像血管分割[J]. 中国生物医学工程学报, 2019,38(1):1-8.
[3] ZHU C Z, ZOU B J, ZHAO R C, et al. Retinal vessel segmentation in colour fundus images using extreme learning machine[J]. Computerized Medical Imaging and Graphics, 2017,55:68-77.
[4] AL-RAWI M, QUTAISHAT M, ARRAR M. An improved matched filter for blood vessel detection of digital retinal images[J]. Computers in Biology and Medicine, 2007,37(2):262-267.
[5] YIN Y, ADEL M, BOURENNANE S. Retinal vessel segmentation using a probabilistic tracking method[J]. Pattern Recognition, 2012,45(4):1235-1244.
[6] MIRIM S, MAHLOOJIFAR A. Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction[J]. IEEE Transactions on Biomedical Engineering, 2011,58(5):1183-1192.
[7] WANG S L, YIN Y L, CAO G B, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J]. Neurocomputing, 2015,149:708-717.
[8] 唐明轩,李孝杰,周激流. 基于Dense Connected深度卷积神经网络的自动视网膜血管分割方法[J]. 成都信息工程大学学报, 2018,33(5):525-530.
[9] ORANDO J I, PROKOFYEVA E, BLASCHKO M B. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images[J]. IEEE Transactions on Biomedical Engineering, 2017,64(1):16-27.
[10]GUO Y H, BUDAK U, VESPA L J,et al. A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy[J]. Measurement, 2018,125:586-591.
[11]XIAO X, LIAN S, LUO Z M, et al. Weighted Res-UNet for high-quality retina vessel segmentation[C]// Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education. 2018:327-331.
[12]GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]// Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. 2011:315-323.
[13]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. 2015:448-456.
[14]ROYCHOWDHURY S, KOOZEKANANI D D, PARHI K K. Blood vessel segmentation of fundus images by major vesse extraction and subimage classification[J]. IEEE Journal of Biomedical and Health Informatics, 2015,19(3):1118-1128.
[15]郑婷月,唐晨,雷振坤.基于全卷积神经网络的多尺度视网膜血管分割[J]. 光学学报, 2019,39(2):119-126.
[16]LONG J, SHELHAMER E, ARRELL T D. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:3431-3440.
[17]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutionalnets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848.
[18]陈萌梦,熊兴良,张琰,等. 1种视网膜眼底图像增强的新方法[J]. 重庆医科大学学报, 2014,39(8):1087-1090.
[19]OKTAY C, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: Learning where to look for the pancreas[J].arXiv preprint arXiv:1804.03999, 2018.
[20]梁礼明,盛校棋,蓝智敏,等.自适应尺度信息的U型视网膜血管分割算法[J].光学学报, 2019,39(8):118-132.
[21]NGO L, HAN J H. Multi-level deep neural network for effcient segmentation of blood vessels infundus images[J]. Electronics Letters, 2017,53(16):1096-1098.
[22]NIEMEIJER M,STAAL J,VAN GINNEKEN B,et al. Comparative study of retinal vessel segmentation methods on a new publicly available database[C]//Proceedings of SPIE:The International Society for Optical Engineering. 2004.DOI:10.1117/12.535349.
[23]朱承璋,邹北骥,向遥,等. 彩色眼底图像视网膜血管分割方法研究进展[J]. 计算机辅助设计与图形学学报, 2015,27(11):2046-2057.
[24]储清翠,王华彬,陶亮. 图像的局部自适应Gamma校正[J]. 计算机工程与应用, 2015,51(7):189-208.
[25]朱辉,秦品乐. 基于多尺度特征结构的U-Net肺结节检测算法[J]. 计算机工程, 2019,45(4):254-261.
[26]LI Q L, FENG B W, XIE L P,et al. A cross modality learning approach for vessel segmentation in retinal images[J]. IEEE Transactions on Medical Imaging, 2016, 35(1):109-118.
[27]DASGUPTA A,S INGH S. A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation[C]// 2017 IEEE 14th International Symposium on Biomedical Imaging. 2017:248-251.
[28]HU K, ZHANG Z Z, NIU X R, et al. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function[J]. Neurocomputing, 2018,309:179-191.
[29]YAN Z Q, YANG X, CHENG K T. Joint segment level and pixel-wise losses for deep learning based retinal vessel segmentation[J]. IEEE Transactions on Biomedical Engineering, 2018,65(9):1912-1923.
[30]ALOM Z, YAKOPCIC C, HASAN M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019,6(1).DOI:10.1117/1.JMI.6.1.014006.
|