[1] MIAO M M, ZENG H, WANG A M, et al. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and weighted nave Bayesian classifier-based approach[J]. Journal of Neuroscience Methods, 2017,278:13-24.
[2] 罗飞,刘鹏飞,罗元,等. 多特征融合的运动想象脑电特征提取方法[J]. 计算机应用, 2020,40(2):616-620.
[3] ZHANG S R, ZHU Z B, ZHANG B X, et al. The CSP-based new features plus non-convex log sparse feature selection for motor imagery EEG classification[J]. Sensors, 2020,20(17). DOI: 10.3390/s20174749.
[4] 裴晓梅,郑崇勋. 基于Fisher判据时频分析的运动相关脑电特征选择及优化[J]. 西安交通大学学报, 2008,42(8):1026-1030.
[5] 徐佳琳,左国坤. 基于互信息与主成分分析的运动想象脑电特征选择算法[J]. 生物医学工程学杂志, 2016,33(2):201-207.
[6] 唐肖芳,周金治. 基于散度分析的脑电信号特征选择[J]. 计算机工程, 2015,41(5):290-294.
[7] ATYABI A, LUERSSEN M, FITZGIBBON S, et al. Evolutionary feature selection and electrode reduction for EEG classification[C]// Proceedings of the 2012 IEEE Congress on Evolutionary Computation. 2012. DOI: 10.1109/CEC.2012.6256130.〖HJ1.1mm〗
[8] ESLAHI S V, DABANLOO N J, MAGHOOLI K. A GA-based feature selection of the EEG signals by classification evaluation: Application in BCI systems[J]. arXiv preprint arXiv:1903.02081, 2019.
[9] RAKSHIT P, BHATTACHARYYA S, KONAR A, et al. Artificial bee colony based feature selection for motor imagery EEG data[C]// Proceedings of the 7th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). 2013:127-138.
[10]LIU A M, CHEN K, LIU Q, et al. Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata[J]. Sensors, 2017,17(11). DOI: 10.3390/s17112576.
[11]PRIPP A H, STANISIC M. Association between biomarkers and clinical characteristics in chronic subdural hematoma patients assessed with LASSO regression[J]. PLoS One, 2017,12(11). DOI: 10.1371/journal.pone.0186838.
[12]王金甲,薛芳,李慧. 基于稀疏组LASSO的脑机接口通道和特征选择研究[J]. 仪器仪表学报, 2015,36(8):1831-1837.
[13]裴作飞,李兆玉,王云锋,等. 基于自适应遗传算法的混合特征选择方法[J]. 计算机应用与软件, 2020,37(8):256-259.
[14]江泽涛,周谭盛子,胡硕,等. 基于特征选择的两级混合入侵检测方法[J]. 计算机工程与设计, 2020,41(3):614-620.
[15]肖艳,姜琦刚,王斌,等. 基于Relief F和PSO混合特征选择的面向对象土地利用分类[J]. 农业工程学报, 2016,32(4):211-216.
[16]GHAREB A S, BAKAR A A, HAMDAN A R. Hybrid feature selection based on enhanced genetic algorithm for text categorization[J]. Expert Systems with Applications, 2016,49:31-47.
[17]ALMUGREN N, ALSHAMLAN H. A survey on hybrid feature selection methods in microarray gene expression data for cancer classification[J]. IEEE Access, 2019,7:78533-78548.
[18]QI Y J, DING F, XU F Z, et al. Channel and feature selection for a motor imagery-based BCI system using multilevel particle swarm optimization[J]. Computational Intelligence and Neuroscience, 2020,2020. DOI: 10.1155/2020/8890477.〖HJ1mm〗
[19]LOTTE F, GUAN C T. Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms[J]. IEEE Transactions on Biomedical Engineering, 2011,58(2):355-362.
[20]张绍荣,赵紫宁,莫云,等. 特征提取对通道选择方法的影响研究[J]. 国外电子测量技术, 2020,39(9):1-6.
[21]NAEEM M, BRUNNER C, LEEB R, et al. Seperability of four-class motor imagery data using independent components analysis[J]. Journal of Neural Engineering, 2006,3(3):208-216.
[22]LEEB R, LEE F, KEINRATH C, et al. Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007,15(4):473-482.
[23]ZHANG Y, WANG Y, JIN J, et al. Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification[J]. International Journal of Neural Systems, 2017,27(2). DOI: 10.1142/S0129065716500325.
[24]TOO J, ABDULLAH A R, MOHD SAAD N. A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection[J]. Informatics, 2019,6(2). DOI: 10.3390/informatics6020021.
[25]TOO J, ABDULLAH A R, MOHD SAAD N, et al. EMG feature selection and classification using a Pbest-guide binary particle swarm optimization[J]. Computation, 2019,7(1). DOI: 10.3390/computation7010012.
[26]KIRAR J S, AGRAWAL R K. A combination of spectral graph theory and quantum genetic algorithm to find relevant set of electrodes for motor imagery classification[J]. Applied Soft Computing, 2020,97(B). DOI: 10.1016/j.asoc.2019.105519.
[27]ARICAN M, POLAT K. Binary particle swarm optimization (BPSO) based channel selection in the EEG signals and its application to speller systems[J]. Journal of Artificial Intelligence and Systems, 2020,2(1):27-37.
|