[1] CHU Z, GIANVECCHIO S, WANG H N, et al. Who is tweeting on twitter: Human, bot, or cyborg?[C]// Proceedings of the 26th Annual Computer Security Applications Conference. 2010:21-30.
[2] BESSI A, FERRARA E. Social bots distort the 2016 U.S. presidential election online discussion[J]. First Monday, 2016,21(11):DOI: https://doi.org/10.5210/fm.v21i11.7090.
[3] FERRARA E. Disinformation and social bot operations in the run up to the 2017 french presidential election[J]. First Monday, 2017,22(8):DOI: https://doi.org/10.5210/fm.v22i8.8005.
[4] STELLA M, FERRARA E, DE DOMENICO M. Bots increase exposure to negative and inflammatory content in online social systems[J]. Proceedings of the National Academy of Sciences, 2018,115(49):12435-12440.
[5] ALLEM J P, FERRARA E. Could social bots pose a threat to public health?[J]. American Journal of Public Health, 2018,108(8):1005-1006.
[6] ALLEM J P, FERRARA E, UPPU S P, et al. E-cigarette surveillance with social media data: Social bots, emerging topics, and trends[J]. JMIR Public Health and Surveillance, 2017,3(4):e98.
[7] BRONIATOWSKI D A, JAMISON A M, QI S, et al. Weaponized health communication: Twitter bots and russian trolls amplify the vaccine debate[J]. American Journal of Public Health, 2018,108(10):1378-1384.
[8] DEB A, MAJMUNDAR A, SEO S, et al. Social bots for online public health interventions[C]// 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2018:1-4.
[9] CRESCI S, LILLO F, REGOLI D, et al. Cashtag piggybacking: Uncovering spam and bot activity in stock microblogs on twitter[J]. ACM Transactions on the Web, 2019,13(2):1-27.
[10]VAROL O, FERRARA E, DAVIS C A, et al. Online human-bot interactions: Detection, estimation, and characterization[J]. Social and Information Networks, arxiv preprint arXiv:1703.03107, 2017.
[11]CRESCI S, DI PIETRO R, PETROCCHI M, et al. The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race[C]// Proceedings of the 26th International Conference on World Wide Web Companion. 2017:963-972.
[12]CRESCI S, PETROCCHI M, SPOGNARDI A, et al. From reaction to proaction: Unexplored ways to the detection of evolving spambots[C]// Companion of the Web Conference 2018. 2018:1469-1470.
[13]FERRARA E, VAROL O, DAVIS C, et al. The rise of social bots[J]. Communications of the ACM, 2016,59(7):96-104.
[14]YANG K C, VAROL O, HUI P M, et al. Scalable and generalizable social bot detection through data selection[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(1):1096-1103.
[15]RODRIGUEZ-RUIZ J, MATA-SANCHEZ J I, MONROY R, et al. A one-class classification approach for bot detection on twitter[J]. Computers & Security, 2020,91:101715.1-101715.14.
[16]GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020,63(11):139-144.
[17]LOYOLA-GONZALEZ O, MONROY R, RODRIGUEZ J, et al. Contrast pattern-based classification for bot detection on twitter[J]. IEEE Access, 2019,7:45800-45817.
[18]DAVIS C A, VAROL O, FERRARA E, et al. BotOrNot: A system to evaluate social bots[C]// Proceedings of the 25th International Conference Companion on World Wide Web. 2016:273-274.
[19]SAYYADIHARIKANDEH M, VAROL O, YANG K C, et al. Detection of novel social bots by ensembles of specialized classifiers[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020:2725-2732.
[20]KANTEPE M, GANIZ M C. Preprocessing framework for Twitter bot detection[C]// 2017 International Conference on Computer Science and Engineering. 2017:630-634.
[21]PING H, QIN S. A social bots detection model based on deep learning algorithm[C]// 2018 IEEE 18th International Conference on Communication Technology. 2018:1435-1439.
[22]LIU Z, CHEN C, YANG X, et al. Heterogeneous graph neural networks for malicious account detection[J]. Machine Learning, arXiv preprint arXiv:2002.12307, 2018.
[23]CHEN Z, SUBRAMANIAN D. An unsupervised approach to detect spam campaigns that use botnets on Twitter[J]. Social and Information Networks, arXiv preprint arXiv:1804.05232, 2018.
[24]AHMED F, ABULAISH M. A generic statistical approach for spam detection in online social networks[J]. Computer Communications, 2013,36(10-11):1120-1129.
[25]MILLER Z, DICKINSON B, DEITRICK W, et al. Twitter spammer detection using data stream clustering[J]. Information Sciences, 2014,260:64-73.
[26]CHAVOSHI N, HAMOONI H, MUEEN A. Identifying correlated bots in Twitter[C]// International Conference on Social Informatics. 2016:14-21.
[27]CHEN T, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016:785-794.
|