[1] 郭继鸿. 中国心脏性猝死现状与防治[J]. 中国循环杂志, 2013,28(5):323-326.
[2] 鲁力,史若飞. 心脏骤停心脏性猝死和现场心肺复苏[J]. 中国急救医学, 2012,32(11):1059-1062.
[3] DOTSINSKY I. Clifford Gari D, Azuaje Francisco, McSharry Patrick E, Eds: Advanced methods and tools for ECG analysis[J]. Biomedical Engineering Online, 2007,6(1): Article Number 18.
[4] YE C, KUMAR B V K V, COIMBRA M T. Heartbeat classification using morphological and dynamic features of ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2012,59(10):2930-2941.
[5] KUTLU Y, KUNTALP D. A multi-stage automatic arrhythmia recognition and classification system[J]. Computers in Biology & Medicine, 2011,41(1):37-45.
[6] UBEYLI E D. Combining recurrent neural networks with eigenvector methods for classification of ECG beats[J]. Digital Signal Processing, 2009,19(2):320-329.
[7] UBEYLI E D. Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients[J]. Computers in Biology and Medicine, 2008,38(1):401-410.
[8] LEI W K, LI B N, DONG M C, et al. An application of morphological feature extraction and support vector machines in computerized ECG interpretation[C]// 2007 6th Mexican International Conference on Artificial Intelligence, Special Session. 2007:82-90.
[9] LI X H, SHU L, HU H L. Kernel-based nonlinear dimensionality reduction for electrocardiogram recognition[J]. Neural Computing and Applications, 2009,18(8): Article Number 1013.
[10]DOQUIRE G, DE LANNOY L, FRANCOIS D, et al. Feature selection for interpatient supervised heart beat classification[J]. Computational Intelligence and Neuroscience, 2011: Article ID 643816.
[11]陈佩. 主成分分析法研究及其在特征提取中的应用[D]. 西安.陕西师范大学, 2014.
[12]卞水荣,顾媛媛,赵强. PCA-SVM模式分类方法在心电信号分析中的应用[J]. 电子设计工程, 2018,28(20):37-41.
[13] 张泾周,李陈,李婷,等. 基于神经网络的心电信号分类方法研究[J]. 中国医疗器械杂志, 2008,32(3):183-185.
[14]王润,贺兵兵. 基于神经网络的心电信号分类识别[J]. 现代计算机(专业版), 2017(23):37-40.
[15] RAJPURKAR P, HANNUN A Y, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[J]. arXiv preprint arXiv:1707.01836, 2017.
[16]HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019,25(1):65-69.
[17]JUN T J, NGUYEN H M, KANG D, et al. ECG arrhythmia classification using a 2-D convolutional neural network[J]. arXiv preprint arXiv:1804.06812, 2018.
[18]金林鹏,董军. 面向临床心电图分析的深层学习算法[J]. 中国科学:信息科学, 2015,45(3):398-416.
[19] ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine, 2017,89:389-396.
[20]CHAZAL P D, O’DWYER M , REILLY R B . Automatic classification of heartbeats using ECG morphology and heartbeat interval features[J]. IEEE Transactions on Biomedical Engineering, 2004,51(7):1196-1206.
[21]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision & Pattern Recognition. 2016:770-778.
[22]SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern. 2018:4510-4520.
[23]MATEUSZ B, ATSUTO M, MAZUROWSKI M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018,106:249-259.
[24]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. 2017:2999-3007.
[25]SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:761-769.
[26]LI T Y, ZHOU M. ECG classification using wavelet packet entropy and random forests[J]. Entropy, 2016,18(8):285-301.
[27] KACHUEE M, FAZELI S, SARRAFZADEH M. ECG heartbeat classification: A deep transferable representation[C]// 2018 IEEE International Conference on Healthcare Informatics. 2018:443-444.
|