[1] 朱应武,杨家海,张金祥. 基于流量信息结构的异常检测[J]. 软件学报, 2010,21(10):2573-2583.
[2] 卓勤政. 基于深度学习的网络流量分析研究[D]. 南京:南京理工大学, 2018.
[3] 黎佳玥,赵波,李想,等. 基于深度学习的网络流量异常预测方法[J]. 计算机工程与应用, 2020,56(6):39-50.
[4] WANG J, ROSSELL D, CASSANDRAS C G, et al. Network anomaly detection: A survey and comparative analysis of stochastic and deterministic methods[C]// Proceedings of the 52nd IEEE Conference on Decision and Control. 2013:182-187.
[5] AHMED M, MAHMOOD A N, HU J K. A survey of network anomaly detection techniques[J]. Journal of Network & Computer Applications, 2016,60:19-31.
[6] 连鸿飞,张浩,郭文忠. 一种数据增强与混合神经网络的异常流量检测[J]. 小型微型计算机系统, 2020,41(4):786-793.
[7] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey[J]. ACM Computing Surveys, 2009,41(3),DOI: 10.1145/1541880.1541882.
[8] ZHANG S L, WAN J Q. Weight-based method for inside outlier detection[J]. Optik, 2018,154:145-156.
[9] DING T Y, ZHANG M, HE D J. A network intrusion detection algorithm based on outlier mining[C]// Proceedings of the 2017 International Conference on Communications, Signal Processing, and Systems. 2017:1229-1236.
[10]BRAHMA A, PANIGRAHI S. Role of soft outlier analysis in database intrusion detection[M]// Advanced Computing and Intelligent Engineering. Springer, 2020:479-489.
[11]LIU F T, TING K M, ZHOU Z H. Isolation forest[C]// Proceedings of the 8th IEEE International Conference on Data Mining. 2008:413-422.
[12]李洋,郭莉,陆天波,等. TCM-KNN网络异常检测算法优化研究[J]. 通信学报, 2009,30(7):13-19.
[13]BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. 2000:93-104
[14]HAO Y R, SHENG Y Q, WANG J L. Variant gated recurrent units with encoders to preprocess packets for payload-aware intrusion detection[J]. IEEE Access, 2019,7:49985-49998.
[15]LIU F T, TING K M, ZHOU Z H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012,6(1),DOI: 10.145/2133360.2133363.
[16]WANG W, SHENG Y Q, WANG J L, et al. HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J]. IEEE Access, 2017,6:1792-1806.
[17]VAN DER MAATEN L. Accelerating t-SNE using tree-based algorithms[J]. Journal of Machine Learning Research, 2014,15(1):3221-3245.
[18]TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]// Proceedings of the 2nd IEEE International Conference on Computational Intelligence for Security and Defense Applications. 2009:53-58.
[19]ASIA-LEE. NSL-KDD数据集介绍与下载[EB/OL]. (2018-07-06)[2020-01-30]. https://blog.csdn.net/asialee_bird/article/details/80937203.
[20]SHANBHOGUE R D, BEENA B M. Survey of data mining (DM) and machine learning (ML) methods on cyber security[J]. Indian Journal of Science and Technology, 2017,10(35):1-7.
[21]XU Q Y, ZHANG L. The effect of different hidden unit number of sparse autoencoder[C]// Proceedings of the 27th Chinese Control and Decision Conference. 2015:2464-2467.
[22]郝怡然,盛益强,王劲林,等. 基于递归神经网络的网络安全事件预测[J]. 网络新媒体技术, 2017,6(5):54-58.
[23]HAO Y R, SHENG Y Q, WANG J L. A graph representation learning algorithm for low-order proximity feature extraction to enhance unsupervised IDS preprocessing[J]. Applied Sciences, 2019,9(20), DOI: 10.3390/app9204473.
[24]ERFANI S M, RAJASEGARAR S, KARUNASEKERA S, et al. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J]. Pattern Recognition, 2016,58:121-134.
[25]鲍捷,牛颉,张勇,等. 物联网异常流量检测算法研究[J]. 信息技术与网络安全, 2019,38(2):17-20.
[26]ARYAL S, TING K M, WELLS J R, et al. Improving iForest with relative mass[C]// Proceedings of the 2014 Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2014:510-521.
[27]DU M, LI F F, ZHENG G N, et al. DeepLog: Anomaly detection and diagnosis from system logs through deep learning[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017:1285-1298.
[28]GOLDSTEIN M, UCHIDA S. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[J]. PLoS One, 2016,11(4):e0152173.
|