[1] HAN J W. Mining heterogeneous information networks by exploring the power of links[C]// International Conference on Discovery Science. Springer-Verlag, 2009:13-30.
[2] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8):30-37.
[3] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.
[4] KONSTAN J A, MILLER B N, MALTZ D, et al. GroupLens: Applying collaborative filtering to Usenet news[J]. Communications of the ACM, 1997,40(3):77-87.
[5] 李书宁. 互联网信息环境中信息超载问题研究[J]. 情报科学, 2005,23(10):1587-1590.
[6] 王国霞,刘贺平. 个性化推荐系统综述[J]. 计算机工程与应用, 2012,48(7):66-76.
[7] SHI C, KONG X N, HUANG Y, et al. HeteSim: A general framework for relevance measure in heterogeneous networks[J]. IEEE Transactions on Knowledge & Data Engineering, 2014,26(10):2479-2492.
[8] YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: A heterogeneous information network approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. ACM, 2014:283-292.
[9] SHI C, ZHANG Z Q, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. ACM, 2015:453-462.
[10]ZHANG J, ACKERMAN M S, ADAMIC L A. Expertise networks in online communities: Structure and algorithms[C]// Proceedings of the 16th International Conference on World Wide Web(WWW 2007). ACM, 2007:221-230.
[11]JEON J, CROFT W B. LEEE J H, et al. A framework to predict the quality of answers with non-textual features[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2006:228-235.
[12]RIAHI F, ZOLAKTAF Z, SHAFIEI M, et al. Finding expert users in community question answering[C]// Proceeding of the 21st International Conference on World Wide Web. ACM, 2012:791-798.
[13]刘健,李绮,刘宝宏,等. 基于话题模型的专家发现方法[J]. 国防科技大学学报, 2013,35(2):127-131.
[14]YANG S K, LUA E K, WANG Y Z. Towards human-centric personalized expertise ranking in community-based question answering[C]// ACM Sigcomm Workshop on Future Human-centric Multimedia Networking. ACM, 2013:41-46.
[15]PAGE L, BRIN S, MOTWANI R, et al. The PageRank Citation Ranking: Bringing Order to the Web[R]. Stanford InfoLab, 1999.
[16]JURCZYK P, AGICHTEIN E. Discovering authorities in question answer communities by using link analysis[C]// Proceedings of the 16th ACM Conference on Information and Knowledge Management. ACM, 2007:919-922.
[17]ZHOU G Y, LAI S W, LIU K, et al. Topic-sensitive probabilistic model for expert finding in question answer communities[C]// ACM International Conference on Information & Knowledge Management. ACM, 2012:1662-1666.
[18]彭爽. 面向问答社区的专家发现方法的研究与实现[D]. 北京:北京邮电大学, 2018.
[19]KAO W C, LIU D R, WANG S W. Expert finding in question-answering websites: A novel hybrid approach[C]// ACM Symposium on Applied Computing. ACM, 2010:867-871.
[20]YANG L, QIU M H, GOTTIPATI S, et al. CQARank: Jointly model topics and expertise in community question answering[C]// ACM International Conference on Information & Knowledge Management. ACM, 2013:99-108.
[21]SHI C, LI Y T, ZHANG J W, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge & Data Engineering, 2017,29(1):17-37.
[22]SHI C, KONG X N, YU P S, et al. Relevance search in heterogeneous networks[C]// International Conference on Extending Database Technology. ACM, 2012:180-191.
[23]张邦佐,桂欣,何涛,等. 一种融合异构信息网络和评分矩阵的推荐新算法[J]. 计算机研究与发展, 2014,51(S2):69-75.
[24]张海霞,吕振,张传亭,等. 一种引入加权异构信息的改进协同过滤推荐算法[J]. 电子科技大学学报, 2018,47(1):112-116.
[25]王瑜,武延军,吴敬征,等. 基于异构网络面向多标签系统的推荐模型研究[J]. 软件学报, 2017,28(10):2611-2624.
|