[1] LE T T T, MOH S. A spectrum-aware priority-based link scheduling algorithm for cognitive radio body area networks[J]. Sensors, 2019,19(7):1640:1-21.
[2] NA W, LEE Y, DAO N N, et al. Directional link scheduling for real-time data processing in smart manufacturing system[J]. IEEE Internet of Things Journal, 2018,5(5):3661-3671.
[3] YU D X, ZOU Y F, ZHANG Y, et al. Distributed dominating set and connected dominating set construction under the dynamic SINR model[C]// 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019:835-844.
[4] HALLDRSSON M M, HOLZER S, MARKATOU E A, et al. Leader election in SINR model with arbitrary power control[J]. Theoretical Computer Science, 2020,811:21-28.
[5] HU M S, CHANG Y Y, ZENG T Y, et al. SINR loss and user selection in massive MU-MISO systems with ZFBF[J]. ETRI Journal, 2019,41(5):637-647.
[6] BOLHASANI M, MEHRSHAHI E, GHORASHI S A, et al. Constant envelope waveform design to increase range resolution and SINR in correlated MIMO radar[J]. Signal Processing, 2019,163:59-65.
[7] GHIASIAN A, OMOOMI B, SAIDI H. Complexity reduction of throughput optimal link scheduling algorithm through topology control in wireless networks[J]. International Journal of Ad Hoc and Ubiquitous Computing, 2018,27(1):69-79.
[8] WANG Y, XIA Y. I-CSMA: A link-scheduling algorithm for wireless networks based on Ising model[J]. IEEE Transactions on Control of Network Systems, 2018,5(3):1038-1050.
[9] POCOVI G, PEDERSEN K I, MOGENSEN P. Joint link adaptation and scheduling for 5G ultra-reliable low-latency communications[J]. IEEE Access, 2018,6:28912-28922.〖HJ1.55mm〗
[10]GE M Y, BLOUGH D M. Mobility-aware multi-user MIMO link scheduling for dense wireless networks[C]// 2018 IEEE International Conference on Communications (ICC). IEEE, 2018:DOI:10.1109/ICC.2018.8422380.
[11]LEONG A S, QUEVEDO D E, DOLZ D, et al. Transmission scheduling for remote state estimation over packet dropping links in the presence of an eavesdropper[J]. IEEE Transactions on Automatic Control, 2019,64(9):3732-3739.
[12]WU J H, LIN D D, LI G S, et al. Distributed link scheduling algorithm based on successive interference cancellation in MIMO wireless networks[J]. Wireless Communications and Mobile Computing, 2019:DOI:10.1155/2019/9083282.
[13]王颖,熊文成,李文璟. 基于最大独立链路集的随机虚拟网络映射算法[J]. 北京邮电大学学报, 2014,37(s1):8-11.
[14]WANG C, YU J G, YU D X, et al. An improved approximation algorithm for the shortest link scheduling problem in wireless networks under SINR and hypergraph models[C]// International Conference on Wireless Algorithms, Systems, and Applications (WASA). 2014:150-160.
[15]HUANG B G, YU J G, YU D X, et al. SINR based maximum link scheduling with uniform power in wireless sensor networks[J]. KSII Transactions on Internet & Information Systems, 2014,8(11):4050-4067.
[16]HUANG B G, YU J G, CHENG X Z, et al. SINR based shortest link scheduling with oblivious power control in wireless networks[J]. Journal of Network and Computer Applications, 2017,77:64-72.
[17]SAAD M, ABDALLAH S. On millimeter wave 5G backhaul link scheduling[J]. IEEE Access, 2019,7:76448-76457.
[18]BORBASH S A, EPHREMIDES A. Wireless link scheduling with power control and SINR constraints[J]. IEEE Transactions on Information Theory, 2006,52(11):5106-5111.
[19]WANG Y S, CHIN K W, SOH S. Link scheduling in wireless networks with RF energy harvesting nodes[J]. IEEE Transactions on Green Communications & Networking, 2019,3(2):302-316.
[20]YU J G, HUANG B G, CHENG X Z, et al. Shortest link scheduling algorithms in wireless networks under the SINR model[J]. IEEE Transactions on Vehicular Technology, 2017,66(3):2643-2657.
[21]马春梅,黄宝贵,张秀娟. 基于SINR干扰模型的低延迟链路调度[J]. 电子技术, 2016,45(8):90-92.
[22]BLOUGH D M, RESTA G, SANTI P. Approximation algorithms for wireless link scheduling with SINR-based interference[J]. IEEE/ACM Transactions on Networking, 2010,18(6):1701-1712.
[23]RICARDO G I, DE REZENDE J F, BARBOSA V C. Scheduling wireless links in the physical interference model by fractional edge coloring[J]. IEEE Wireless Communications Letters, 2020,9(4):528-532.
|