[1] 李洪业. 幻影围棋非完美信息机器博弈问题关键算法研究[D]. 沈阳:东北大学, 2014.
[2] 滕雯娟. 基于虚拟遗憾最小化算法的德州扑克机器博弈研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[3] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016,529(7587):484-489.
[4] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017,550(7676):354-359.
[5] BROWN N, SANDHOLM T. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals[J]. Science, 2018,359(6374):418-424.
[6] 张加佳. 非完备信息机器博弈中风险及对手模型的研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[7] 李昌. 基于Q学习算法的非完备信息机器博弈的研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[8] SILVER D, HUBERT T, SCHRITTWIESER J, et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play [J]. Science, 2018,362(6419):1140-1144.
[9] 林华. 基于Self-Play的五子棋智能博弈机器人[D]. 杭州:浙江大学, 2019.
[10]ROIZEN I, PEARL J. A minimax algorithm better than alpha-beta? Yes and No[J]. Artificial Intelligence, 1983,21(1/2):199-220.
[11]FULLER S H, GASCHNIG J G, GILLOGLY J J. Analysis of the Alpha-beta Pruning Algorithm[M]. Department of Computer Science, Carnegie-Mellon University, 1973.
[12]GELLY S, SILVER D. Combining online and offline knowledge in UTC[C] // Proceedings of the 24th ACM International Conference on Machine Learning. 2007:273-280.
[13]CHASLOT G, BAKKES E, SZITA I, et al. Monte-Carlo tree search: A new framework for game AI[C]// Proceedings of the 4th Artificial Intelligence and Interactive Digital Entertainment Conference. 2008:216-217.
[14]张会娟,张强. 不确定性下非合作博弈强Nash均衡的存在性[J]. 控制与决策, 2010,25(8):1251-1254.
[15]BROWN N, SANDHOLM T. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals[J]. Science, 2018,359(6374):418-424.
[16]季铭. 多人博弈模型的合作现象研究[D]. 苏州:苏州大学, 2010.
[17]KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2019, DOI:10.1007/s10462-020-09825-6.
[18]HE S, WANG Y, XIE F, et al. Game player strategy pattern recognition and how UTC algorithms apply pre-knowledge of player’s strategy to improve opponent AI[C]// IEEE International Conference on Computational Intelligence for Modeling Control & Automation. 2008:1177-1181.
[19]LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time series[M]// The Handbook of Brain Theory and Neural Networks. MIT Press, 1995:276-278.
[20]LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015,521(7553):436.
[21]KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[22]KIM P, SONG J H, SONG T K. A new frequency domain passive acoustic mapping method using passive Hilbert beamforming to reduce the computational complexity of fast Fourier transform [J]. Ultrasonics, 2020,102:106030.
[23]何跃,赵书朋,何黎. 基于情感知识和机器学习算法的组合微文情感倾向分类研究[J]. 情报杂志, 2018,37(5):189-194.
|