[1] 刘颖,朱丽,林庆帆,等. 图像超分辨率技术的回顾与展望[J]. 计算机科学与探索, 2019,14(2):181-199.
[2] 刘村,李元祥,周拥军,等. 基于卷积神经网络的视频图像超分辨率重建方法[J]. 计算机应用研究, 2019,36(4):1256-1260.
[3] 吴磊,吕国强,赵晨,等. 基于多尺度残差网络的CT图像超分辨率重建[J]. 液晶与显示, 2019,34(10):1006-1012.
[4] 张颢,范新南,李敏,等. 基于光学成像模型的水下图像超分辨率重构[J]. 计算机与现代化, 2017(4):7-13.
[5] 王容,张永辉,张健,等. 基于CNN的图像超分辨率重建方法[J]. 计算机工程与设计, 2019,40(6):1654-1659.
[6] 曾接贤,倪申龙. 改进的卷积神经网络单幅图像超分辨率重建[J]. 计算机工程与应用, 2019,55(13):1-7.
[7] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]// European Conference on Computer Vision. 2014:184-199.
[8] KIM J, KWON LEE J, MU LEE K. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:1646-1654.
[9] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]// European Conference on Computer Vision. 2016:391-407.
[10]SHI W, CABALLERO J, HUSZR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:1874-1883.
[11]LEDIG C, THEIS L, HUSZR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:4681-4690.
[12]LAI W S, HUANG J B, AHUJA N, et al. Deep laplacian pyramid networks for fast and accurate super-resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:624-632.
[13]连逸亚,吴小俊. 超深卷积神经网络的图像超分辨率重建研究[J]. 计算机工程, 2019,45(1):223-226.
[14]姚琴娟,林家骏. 基于双通道CNN的单幅图像超分辨率重建[J]. 华东理工大学学报(自然科学版), 2019,45(5):801-808.
[15]袁昆鹏,席志红. 基于深度跳跃级联的图像超分辨率重建[J]. 光学学报, 2019,39(7):0715003.
[16]LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017:136-144.
[17]沈明玉,俞鹏飞,汪荣贵,等. 多阶段融合网络的图像超分辨率重建[J]. 中国图象图形学报, 2019,24(8):1258-1269.
[18]沈明玉,俞鹏飞,汪荣贵,等. 多路径递归网络结构的单帧图像超分辨率重建[J]. 光电工程, 2019,46(11):180489.
[19]赵小强,宋昭漾. Adam优化的CNN超分辨率重建[J]. 计算机科学与探索, 2019,13(5):858-865.
[20]ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2016,3(1):47-57.
[21]TAI Y, YANG J, LIU X M, et al. MemNet: A persistent memory network for image restoration[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:4539-4547.
[22]KIM J, KWON LEE J, MU LEEK. Deeply-recursive convolutional network for image super-resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:1637-1645.
[23]AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]// Proceedings of the European Conference on Computer Vision. 2018:252-268.
|