计算机与现代化 ›› 2019, Vol. 0 ›› Issue (07): 1-.doi: 10.3969/j.issn.1006-2475.2019.07.001
• 人工智能 • 下一篇
收稿日期:
2019-03-25
出版日期:
2019-07-05
发布日期:
2019-07-08
作者简介:
陈泯融(1977-),女,广东化州人,副教授,博士,研究方向:计算智能算法与信息安全,E-mail: mrongchen@126.com; 黄广敬(1996-),男,本科生,研究方向:计算智能算法,E-mail: 305468917@qq.com。
基金资助:
Received:
2019-03-25
Online:
2019-07-05
Published:
2019-07-08
摘要: 在过去几十年里,许多多目标进化算法被广泛应用于解决多目标优化问题,其中一种比较流行的多目标进化算法是基于分解的多目标进化算法(MOEA/D)。花朵授粉算法是一种启发式优化算法,但迄今为止,花朵授粉算法在基于分解的多目标进化算法领域的研究还非常少。本文在基于分解的多目标进化算法的框架下,将花朵授粉算法拓展至多目标优化领域,提出一种基于分解的多目标花朵授粉算法(MOFPA/D)。此外,为了保证非支配解的多样性,本文提出一种基于网格的目标空间分割法,该方法从找到的Pareto最优解集中筛选出一定数量且分布均匀的Pareto最优解。实验结果表明,基于分解的多目标花朵授粉算法在收敛性与多样性方面均优于基于分解的多目标进化算法。
中图分类号:
陈泯融,黄广敬. 基于分解的多目标花朵授粉算法[J]. 计算机与现代化, 2019, 0(07): 1-.
CHEN Min-rong, HUANG Guang-jing. A Multi-objective Flower Pollination Algorithm Based on Decomposition[J]. Computer and Modernization, 2019, 0(07): 1-.
[1] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197. [2] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014,18(4):577-601. [3] JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II:Handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014,18(4):602-622. [4] CHEN M R, LU Y Z. A novel elitist multiobjective optimization algorithm: Multiobjective extremal optimization[J]. European Journal of Operational Research, 2008,188(3):637-651. [5] LUO J P, LIU Q Q, YANG Y, et al. An artificial bee colony algorithm for multi-objective optimisation[J]. Applied Soft Computing, 2017,50:235-251. [6] ZHANG Q F, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007,11(6):712-731. [7] PENG W, ZHANG Q F. A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems[C]// Proceedings of the 2008 IEEE International Conference on Granular Computing. 2008:534-537. [8] ZHANG Q F, LIU W D, LI H. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances[C]// Proceedings of the 2009 IEEE Congress on Evolutionary Computation. 2009:203-208. [9] LI H, LANDA-SILVA D. An adaptive evolutionary multi-objective approach based on simulated annealing[J]. Evolutionary Computation, 2011,19(4):561-595.〖HJ0.68mm〗 [10]ZHAO S Z, SUGANTHAN P N, ZHANG Q F. Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes[J]. IEEE Transactions on Evolutionary Computation, 2012,16(3):442-446. [11]JAN M A, KHANUM R A. A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D[J]. Applied Soft Computing, 2013,13(1):128-148. [12]KE L J, ZHANG Q F, BATTITI R. MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and AntColony[J]. IEEE Transactions on Cybernetics, 2013,43(6):1845-1859. [13]CHANG P C, CHEN S H, ZHANG Q F, et al. MOEA/D for flowshop scheduling problems[C]// Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). 2008:1433-1438. [14]KONSTANTINIDIS A, ZHANG Q F, YANG K. A subproblem-dependent heuristic in MOEA/D for the deployment and power assignment problem in wireless sensor networks[C]// Proceedings of the 2009 IEEE Congress on Evolutionary Computation. 2009:2740-2747. [15]ZHANG Q F, LIU W D, TSANG E, et al. Expensive multiobjective optimization by MOEA/D with Gaussian process model[J]. IEEE Transactions on Evolutionary Computation, 2010,14(3):456-474. [16]SILVA R C P, LI M, RAHMAN T, et al. Surrogate-based MOEA/D for electric motor design with scarce function evaluations[J]. IEEE Transactions on Magnetics, 2017,53(6): Article Sequence Number: 7400704. [17]YANG X S. Flower pollination algorithm for global optimization[C]// Proceedings of the 2012 International Conference on Unconventional Computing and Natural Computation. 2012:240-249. [18]YANG X S, DEB S, HE X S. Eagle strategy with flower algorithm[C]// Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics. 2013:1213-1217. [19]ABDEL-RAOUF O, ABDEL-BASET M, EL-HENAWY I. A new hybrid flower pollination algorithm for solving constrained global optimization problems[J]. International Journal of Applied Operational Research, 2014,4(2):1-13. [20]YANG X S, KARAMANOGLU M, HE X S. Multi-objective flower algorithm for optimization[J]. Procedia Computer Science, 2013,18:861-868. [21]DAS I, DENNIS J E. A close look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems[J]. Structure Optimization, 1997,14(1):63-69. [22]KARABOGA D. An Idea Based on Honey Bee Swarm for Numerical Optimization[R]. Erciyes University, 2005. [23]KNOWLES J D, CORNE D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000,8(2):149-172. [24]LAUMANNS M, THIELE L, DEB K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary Computation, 2002,10(3):263-282. [25]ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000,8(2):173-195. [26]ZHANG Q F. Professor Qingfu Zhang[DB/OL]. [2018-05-18]. https://dces.essex.ac.uk/staff/qzhang/. |
[1] | 何思达, 陈平华. 基于意图的轻量级自注意力序列推荐模型[J]. 计算机与现代化, 2024, 0(12): 1-9. |
[2] | 郑久超, 赵新元. 基于主题与描述信息的实体链接方法[J]. 计算机与现代化, 2024, 0(12): 10-14. |
[3] | 赵晨阳, 薛涛, 刘俊华. 基于改进Stable Diffusion的时尚服饰图案生成[J]. 计算机与现代化, 2024, 0(12): 15-23. |
[4] | 黄庭培1, 马禄彪1, 李世宝2, 刘建航1. 基于WiFi和原型网络的手势识别方法[J]. 计算机与现代化, 2024, 0(12): 34-39. |
[5] | 刘云海1, 冯广1, 吴晓婷2, 杨群2. 复杂施工场景下的安全帽佩戴检测算法[J]. 计算机与现代化, 2024, 0(12): 66-71. |
[6] | 王艳媛, 茅正冲. 中英文场景文本图像的检测和识别算法[J]. 计算机与现代化, 2024, 0(12): 84-90. |
[7] | 张昆1, 张永伟1, 吴永城1, 张笑文2, 翟世臣2. 基于大模型的设备故障知识图谱自动构建方法[J]. 计算机与现代化, 2024, 0(11): 46-53. |
[8] | 张志霞, 秦志毅. 基于变分模态分解和IGJO-SVR的网络舆情预测[J]. 计算机与现代化, 2024, 0(11): 77-83. |
[9] | 万鸿炜, 陈平华. 基于Involution算子和协调反向注意力的息肉图像分割[J]. 计算机与现代化, 2024, 0(11): 84-90. |
[10] | 张宇1, 2, 黎靖1, 2, 马铭1, 2, 王众祥1, 2, 孙妍1, 2. YOLOLW:一个新的轻量级目标检测模型[J]. 计算机与现代化, 2024, 0(11): 91-98. |
[11] | 董玉玟. 基于改进YOLOv7-tiny的多尺度运动目标检测算法[J]. 计算机与现代化, 2024, 0(11): 99-105. |
[12] | 祁贤, 刘大铭, 常佳鑫. 基于改进自注意力机制的多视图三维重建[J]. 计算机与现代化, 2024, 0(11): 106-112. |
[13] | 陈凯1, 李宜汀1, 2, 全华凤1 . 基于改进YOLOv8的河道废弃瓶检测方法[J]. 计算机与现代化, 2024, 0(11): 113-120. |
[14] | 杨庆五, 罗小辉, 刘鑫. 基于Edge Drawing的工业图像圆检测算法[J]. 计算机与现代化, 2024, 0(11): 121-126. |
[15] | 周安达, 唐超颖. 雨天道路场景语义分割算法及其移动端部署[J]. 计算机与现代化, 2024, 0(10): 7-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||