[1] CHEN Q, HUANG J S, FERIS R, et al. Deep domain adaptation for describing people based on fine-grained clothing attributes[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2015:5315-5324.
[2] RUSSAKOVSKV O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.
[3] KUMAR N, BERG A C, BELHUMEUR P N, et al. Describable visual attributes for face verification and image search[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011,33(10):1962-1977.
[4] SIDDIQUIE B, FERIS R S, DAVIS L S. Image ranking and retrieval based on multi-attribute queries[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2011:801-808.
[5] GALLEGUILLOS C, RABINOVICH A, BELONGIE S. Object categorization using co-occurrence, location and appearance[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008:1-8.
[6] ZHU J Q, LIAO S C, LEI Z, et al. Pedestrian attribute classification in surveillance: Database and evaluation[C]// IEEE International Conference on Computer Vision Workshops. 2013:331-338.
[7] 胡诚,陈亮,张勋,等. 基于卷积神经网络的监控场景下行人属性识别[J]. 现代计算机(专业版), 2018(1):22-26.
[8] JI Z, ZHENG W X, PANG Y W. Deep pedestrian attribute recognition based on LSTM[C]// IEEE International Conference on Image Processing. 2018:151-155.
[9] LI D W, CHENX T, HUANG K Q. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios[C]// 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR). 2015:1-5.
[10]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015,1:91-99.
[11]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[12]ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// European Conference on Computer Vision (ECCV). 2014:818-833.
[13]SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10). https://arxiv.org/abs/1409.1556.
[14]NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th 〖JP4〗International Conference on Machine Learning. 2010: 807-814.
[15]胡鹏程,张超,鲍丙计,等. 基于车载视频的行人预警系统[J]. 计算机与现代化, 2016(11):43-52.
[16]曾孝文. 关联规则数据挖掘方法的研究[J]. 计算机与现代化, 2006(9):90-92.
[17]黄秋勇,唐爱龙. 关联规则在图像数据挖掘中的应用[J]. 计算机与现代化, 2009(10):98-100.
[18]胡佳. 几种典型关联规则算法的分析与比较[J]. 现代计算机(专业版), 2011(17):15-17.
[19]刘巍,蒋华. 挖掘关联规则中Apriori算法的改进与优化[J]. 计算机与现代化, 2006(11):113-115.
[20]陆丽娜,陈亚萍,魏恒义,等. 挖掘关联规则中Apriori算法的研究[J]. 小型微型计算机系统, 2000,21(9):940-943.
[21]SURESH J, RUSHYANTH P. Generating associations rule mining using Apriori and FPGrowth algorithms[J]. International Journal of Computer Trends & Technology, 2013,4(4):887-892
[22]YU K, LENG B, ZHANG Z, et al. Weakly-supervised learning of mid-level features for pedestrian attribute recognition and localization[J]. Computer Vision and Pattern Recognition, 2016,17(9):4321-4329.
[23]刘华婷,郭仁祥,姜浩. 关联规则挖掘Apriori算法的研究与改进[J]. 计算机应用与软件, 2009,26(1):146-149. |