1]Spyronasios A, Dimopoulos M, Hatzopoulos A. Wavelet analysis for the detection of parametric and catastrophic faults in mixed-signal circuits[J]. IEEE Transactions on Instrumentation and Measurement, 2011,60(6):2025-2038.
[2]邓勇,张禾. 基于Volterra核二次型分布的非线性模拟电路软故障诊断[J]. 控制与决策, 2015(7):1340-1344.
[3]刘本德,胡昌华. 基于Volterra频域核辨识的非线性模拟电路故障诊断[J]. 控制与决策, 2009(8):1167-1171.
[4]徐萍,李耕,王凯. 基于Volterra级数的模拟电路故障诊断[J]. 微计算机信息, 2011(9):118-119.
[5]〖ZK(#〗Wang Tianhai, Brazil T J. Volterra-mapping-based behavioral modeling of nonlinear circuits and systems for high frequencies[J]. IEEE Trans. on Micro-wave Theory and Techniques, 2003,51(5):1433-1440.
[6]Aminian M, Aminian F. A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor[J]. IEEE Transactions on Instrumentation and Measurement, 2007,56(5):1546-1554.
[7]胡莹岑,王友仁,崔江. 模拟电路的一中纠错码SVM诊断方法[J]. 计算机辅助设计与图形学学报, 2011,23(11):1931-1937.
[8]Cui Jiang, Wang Youren. A novel approach of analog circuit fault diagnosis using support vector machines classifier[J]. Measurement, 2011,44(1):281-289.
[9]周绍磊,廖剑,史贤俊. RBF-SVM的核参数选择方法及其在故障诊断中的应用[J]. 电子测量与仪器学报, 2014,28(3):240-246.
[10]Huang C, Wang C. A GA-based feature selection and parameters optimization for support vector machines[J]. Expert Systems with Applications, 2006,31(2):231-240.
[11]赵明渊,唐勇,傅翀,等. 基于带特征染色体遗传算法的支持向量机特征选择和参数优化[J]. 控制与决策, 2010,25(8):1133-1138.
[12]朱凤明,樊明龙. 混沌粒子群算法对支持向量机模型参数的优化[J]. 计算机仿真, 2010,27(11):183-186.
[13]潘文超. 应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J]. 太原理工大学学报(社会科学版), 2011,29(4):1-5.
[14]周金明,王传玉,何帮强. 基于混合核函数 FOA-LSSVM的预测模型[J]. 计算机工程与应用, 2015,51(4):133-137.
[15]Burton T G, Goubran R A, Beaucoup F. Nonlinear system identification using a subband adaptive Volterra filter[J]. IEEE Trans. on Instrumentation and Measurement, 2009,58(5):1389-1397.
[16]洪文鹏,廖明俊. 基于果蝇优化支持向量机的风机故障诊断研究[J]. 风机技术, 2014(9):50-55. |