计算机与现代化 ›› 2017, Vol. 0 ›› Issue (1): 123-126.doi: 10.3969/j.issn.1006-2475.2017.01.025

• 应用与开发 • 上一篇    

脑电情感信号正确提取仿真

  

  1. (广东工业大学自动化学院,广东 广州 510006)
  • 收稿日期:2016-07-01 出版日期:2017-01-12 发布日期:2017-01-11
  • 作者简介:谭志伟(1990-),男,江西南昌人,广东工业大学自动化学院硕士研究生,研究方向:脑机接口; 谢云(1964-),女,江西赣州人,教授,硕士生导师,博士,研究方向:IC设计,信息与通信技术,智能机器人技术; 苏镜(1991-),男,湖南邵阳人,硕士研究生,研究方向:脑机接口。
  • 基金资助:
    广东省自然科学基金资助项目(2016A030313706)

Simulation About Accurate Extraction of Emotional EEG

  1. (School of Automation, Guangdong University of Technology, Guangzhou 510006, China)
  • Received:2016-07-01 Online:2017-01-12 Published:2017-01-11

摘要: 脑电信号是一种微伏级信号,从头皮上采集的脑电信号包含眼电信号、心电信号以及各种环境噪音。针对情感识别如何有效处理脑电信号的问题,本文首先对实验采集的脑电信号应用小波分析和独立分量分析进行预处理去除干扰;其次为了有效地提取脑电特征,应用幅值直方图、标准差在时域上定性地找出2种情感的脑电差异;最后应用功率谱对2种情感脑电的γ波节律进行谱分析。仿真实验结果表明,将脑电信号的γ波节律用于情感识别是可行的。

关键词: 情感识别, 脑电, 独立分量分析, 小波分析, 特征提取

Abstract: EEG signal is a kind of microvolt signal. Collected from the scalp, EEG signals contain EOG signals, ECG signals as well as a variety of environmental noise. For the problem how the emotion recognition does effectively deal with EEG signals, firstly, the collected EEG signals from experiments are pretreated for removing interferences by using wavelet analysis and independent component analysis; secondly, in order to effectively extract EEG signal features, the amplitude histogram and standard difference are used to find qualitatively in time domain the differences in brain power of two kinds of emotion; lastly, the power spectrum is used to analyze the two emotional EEG gamma wave rhythm. The experimental simulation results show that it is feasible to use the gamma wave rhythm of EEG signals for emotion recognition.

Key words: emotion recognition, EEG, ICA, wavelet analysis, feature extraction

中图分类号: