计算机与现代化 ›› 2014, Vol. 0 ›› Issue (1): 77-80.

• 算法分析与设计 • 上一篇    下一篇

基于社会正则化的推荐算法研究

  

  1. 河海大学计算机与信息学院,江苏南京211100
  • 收稿日期:2013-08-28 出版日期:2014-01-20 发布日期:2014-02-10
  • 作者简介:王雪婷(1988-),女,江苏邳州人,河海大学计算机与信息学院硕士研究生,研究方向:信息检索,推荐系统;黄文亮(1986-),男,硕士研究生,研究方向:数据挖掘,信息检索。

Research on Social Regularization-based Recommendation Algorithm

  1. College of Computer and Information, Hohai University, Nanjing 211100, China
  • Received:2013-08-28 Online:2014-01-20 Published:2014-02-10

摘要: 社会网络中包含大量的社会信息,如何从这些社会信息中发掘对用户有用的信息已成为学者和专家的研究热点。本文提出一种基于社会正则化的推荐算法:把改进的矩阵分解技术应用到社会化推荐中;利用社会网络中用户间的朋友关系来优化对用户的建模,学习更好的用户特征空间模型;利用社会网络中的标签信息建立用户和物品的关系,并利用这种关系来优化用户-物品的建模。实验结果表明,改进后的推荐算法的精确度高于传统的推荐算法,有效地解决了社会信息冗余问题。

关键词:  , 矩阵分解技术; 社会化推荐; 特征空间模型; 社会信息

Abstract: Social network includes vast amount of social information, how to find information users are interested in has become research focus of many scholars and experts. Based on this idea, this paper proposes a social regularization-based recommendation algorithm: apply the matrix factorization technology into the social recommendation, make use of friendship between users to get better user’s feature space, consider the tag information in social network, and use this information to learn better user and item feature space. The analysis of experiments shows that the accuracy of the improved algorithm is better than the traditional recommendation algorithm and it solves the problem of redundant social information effectively.

Key words: matrix factorization technology, social recommendation, feature space model, social information