[1] Kim P, Huh L. Kalman Filter for Beginners: With Matlab Examples[M]. Georgia: Createspace Independent Pub, 2011.
[2] Doucet A, Johansen A. A tutorial on particle filtering and smoothing: Fifteen years later[M]// The Oxford Handbook of Nonliner Filtering. New York: Oxford University Press, 2011:656-704.
[3] 刘晓东,钟麦英,柳海. 基于EKF的无人机飞行控制系统故障检测[J]. 上海交通大学学报, 2015,49(6):884-888.
[4] Jiang Guirong, Miao Xiaolu, Wang Yuehui, et al. Real-time estimation of the pressure in the wheel cylinder with a hydraulic control unit in the vehicle braking control system based on the extended Kalman filter[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016,231(10):1340-1352.
[5] 〖KG-*5〗Guo Kexin, Qiu Zhirong, Meng Wei, et al. Ultra-wideband based cooperative relative localization algorithm and experiments for multiple unmanned aerial vehicles in GPS denied environments[J]. International Journal of Micro Air Vehicles, 2017,9(3):169-186.
[6] 刘永进,冯刚,汪文峰,等. 基于EKF的导弹制导系统故障检测[J]. 计算机仿真, 2016,33(8):63-66.
[7] Ho H W, de Croon G C H E, Chu Qiping. Distance and velocity estimation using optical flow from a monocular camera[J]. International Journal of Micro Air Vehicles, 2017,9(3):198-208.
[8] He Lina, Zhou Hairui, Zhang Gongyuan. Improving extended Kalman filter algorithm in satellite autonomous navigation[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016,231(4):743-759.
[9] 刘毛毛,秦品乐,吕国宏,等. 基于多新息理论的EKF改进算法[J]. 计算机应用研究, 2015,32(5):1568-1571.〖ZK)〗
[10]杨鹏生,吴晓军,张玉梅. 改进扩展卡尔曼滤波算法的目标跟踪算法[J]. 计算机工程与应用, 2016,52(5):71-74.
[11]刘国海,施维,李康吉. 插值改进EKF算法在组合导航中的应用[J]. 仪器仪表学报, 2007,28(10):1897-1901.
[12]宁倩慧,张艳兵,刘莉,等. 扩展卡尔曼滤波的目标跟踪优化算法[J]. 探测与控制学报, 2016,38(1):90-94.
[13]吴汉洲,宋卫东,徐敬青. 基于多项式拟合的扩展卡尔曼滤波算法[J]. 计算机应用, 2016,36(5):1455-1457.
[14]朱建峰. 拟线性最优平滑滤波在指令控制一维弹道修正弹上的应用研究[D]. 南京:南京理工大学, 2012.
[15]欧阳广帅,周晶. 基于卡尔曼滤波的高精度弹道滤波算法研究[J]. 电子测量技术, 2014,37(11):16-19.
[16]Choi J, de Castro Lima A C, Haykin S. Kalman filter-trained recurrent neural equalizers for time-varying channels[J]. IEEE Transactions on Communications, 2005,53(3):472-480.
[17]Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. Journal of Machine Learning Research, 2001,2:97-123.
[18]程剑,张凌波,顾幸生. 基于KPLS 的延迟焦化柴油95%点的预测与估计[J]. 系统仿真学报, 2015,27(3):598-602.
[19]Yang Zhen, Guo Jun, Xu Weiran, et al. Multi-scale support vector machine for regression estimation[C]// Proceedings of the 3rd International Symposium on Neural Networks. 2006:1030-1037.
[20]许亚朝,何秋生,王少江,等. 一种改进的自适应卡尔曼滤波算法[J]. 太原科技大学学报, 2016,37(3):163-168.
[21]谢朔,陈德山,初秀民,等. 基于改进多新息扩展卡尔曼滤波的船舶响应模型参数辨识[J/OL]. http://kns.cnki.net/kcms/detail/23.1390.U.20170428.1713.098.html, 2017-04-28. |