计算机与现代化 ›› 2011, Vol. 1 ›› Issue (11): 1-2.doi: 10.3969/j.issn.1006-2475.2011.11.001

• 算法分析与设计 •    下一篇

核主成分分析中核参数选择的遗传算法

陈将宏,张渊渊   

  1. 三峡大学理学院,湖北宜昌443002
  • 收稿日期:2011-09-23 修回日期:1900-01-01 出版日期:2011-11-28 发布日期:2011-11-28

A Genetic Parameter Selection Algorithm in Kernel Principal Components Analysis

CHEN Jiang-hong, ZHANG Yuan-yuan   

  1. College of Science, China Three Gorges University, Yichang 443002, China
  • Received:2011-09-23 Revised:1900-01-01 Online:2011-11-28 Published:2011-11-28

摘要: 基于核方法的主成分分析虽然能够提取数据的非线性特征,但其性能受核参数的影响比较大。本文提出一种基于遗传算法的核参数优化算法,在未知数据分布特征的情况下,采用该方法对核参数进行优化选取,取得较好的实验效果,表明该方法的有效性。

关键词: 核主成分分析, 汇特征空间, 遗传算法

Abstract: Kernel principal component analysis can extract the nonlinear features of the data, but the performance is great impacted by the parameter of kernel function. This paper presents a kernel parameters optimization method which based on a piecewise binary encoding. The experimental results are very good by using the approach to optimize the kernel parameters in the case of unknown the distribution of the data, which indicating the effectiveness of the method.

Key words: kernel principal components analysis, feature spaces, genetic algorithm