计算机与现代化 ›› 2018, Vol. 0 ›› Issue (04): 1-.doi: 10.3969/j.issn.10062475.2018.04.001
• 人工智能 • 下一篇
出版日期:
2018-04-28
发布日期:
2018-05-02
作者简介:
张苗苗(1992),女,山东济宁人,北京交通大学计算机与信息技术学院硕士研究生,研究方向:自然语言处理,语义分析; 张玉洁(1961),女,河南安阳人,教授,博士,研究方向:自然语言处理,机器翻译; 刘明童(1993),男,四川广元人,博士研究生,研究方向:自然语言处理,复述; 徐金安(1970),男,副教授,博士,研究方向:自然语言处理,机器翻译; 陈钰枫(1981),女,副教授,博士,研究方向:自然语言处理,机器翻译。
基金资助:
Online:
2018-04-28
Published:
2018-05-02
摘要: 目前,语义角色标注大多基于双向长短时记忆网络(BiLSTM)。但是,由于词向量表示由上下文窗口中的词嵌入拼接得到,导致其依赖于左右词嵌入的联合作用。针对该问题,引入Gate机制对词向量表示进行调整。为了获取更深层次的语义信息,对BiLSTM的深度进行扩展。此外,引入标签转移概率矩阵进行约束,并且使用条件随机场(CRF)融合全局标签信息得出最优标注序列。实验结果表明,该方法使得汉语语义角色标注的F1值提高1.71%。
中图分类号:
张苗苗,张玉洁,刘明童,徐金安,陈钰枫. 基于Gate机制与BiLSTMCRF的汉语语义角色标注[J]. 计算机与现代化, 2018, 0(04): 1-.
ZHANG Miaomiao, ZHANG Yujie, LIU Mingtong, XU Jinan, CHEN Yufeng. #br# Chinese Semantic Role Labeling Based on Gated Mechanism and BiLSTMCRF[J]. Computer and Modernization, 2018, 0(04): 1-.
[1] 中国中文信息学会. 中文信息处理发展报告(2016)[R]. 北京:中国中文信息学会, 2016. [2] Hochreiter S, Schmidhuber J. Long shortterm memory[J]. Neural Computation, 1997,9(8):17351780. [3] 〖JP3〗Sun Honglin, Jurafsky D. Shallow semantic parsing of Chinese[C]// Proceedings of the 2004 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics. 2004:249256. [4] 〖KG-*6〗〖JP3〗Xue Nianwen. Labeling Chinese predicates with semantic roles[J]. Computational Linguistics, 2008,34(2):225255. [5] Sun Weiwei, Sui Zhifang, Wang Meng, et al. Chinese semantic role labeling with shallow parsing[C]// Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. 2009,3:14751483. [6] Yang Haitong, Zong Chengqing. Multipredicate semantic role labeling[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014:363373. [7] Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning[C]// Proceedings of the 25th International Conference on Machine Learning. 2008:160167. [8] Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J]. The Journal of Machine Learning Research, 2011,12:24932537. [9] Zhou Jie, Xu Wei. Endtoend learning of semantic role labeling using recurrent neural networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. 2015:11271137. [10]Roth M, Lapata M. Neural semantic role labeling with dependency path embeddings[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016,1:11921202. [11] 王臻,常宝宝,穗志方. 基于分层输出神经网络的汉语语义角色标注[J]. 中文信息学报, 2014,28(6):5661. [12]Wang Zhen, Jiang Tingsong, Chang Baobao, et al. Chinese semantic role labeling with bidirectional recurrent neural networks[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015:16261631. [13]Sha Lei, Jiang Tingsong, Li Sujian, et al. Capturing argument relationships for Chinese semantic role labeling[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016:20112016. [14]Guo Jiang, Che Wanxiang, Wang Haifeng, et al. A unified architecture for semantic role labeling and relation classification[C]// Proceedings of the 26th International Conference on Computational Linguistics. 2016:12641274. [15] Tu Zhaopeng, Liu Yang, Lu Zhengdong, et al. Context gates for neural machine translation[J]. Transactions of the Association for Computational Linguistics, 2017,5:8799. [16]Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the 18th International Conference on Machine Learning. 2001:282289. [17]Taskar B, Chatalbashev V, Koller D, et al. Learning structured prediction models: A large margin approach[C]// Proceedings of the 22nd International Conference on Machine Learning. 2005:896903. [18]Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014,15:19291958. [19]王瑞波,李济洪,李国臣,等. 基于Dropout正则化的汉语框架语义角色识别[J]. 中文信息学报, 2017,31(1):147154. [20]Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. 2010:249256. |
[1] | 何思达, 陈平华. 基于意图的轻量级自注意力序列推荐模型[J]. 计算机与现代化, 2024, 0(12): 1-9. |
[2] | 郑久超, 赵新元. 基于主题与描述信息的实体链接方法[J]. 计算机与现代化, 2024, 0(12): 10-14. |
[3] | 赵晨阳, 薛涛, 刘俊华. 基于改进Stable Diffusion的时尚服饰图案生成[J]. 计算机与现代化, 2024, 0(12): 15-23. |
[4] | 黄庭培1, 马禄彪1, 李世宝2, 刘建航1. 基于WiFi和原型网络的手势识别方法[J]. 计算机与现代化, 2024, 0(12): 34-39. |
[5] | 刘云海1, 冯广1, 吴晓婷2, 杨群2. 复杂施工场景下的安全帽佩戴检测算法[J]. 计算机与现代化, 2024, 0(12): 66-71. |
[6] | 王艳媛, 茅正冲. 中英文场景文本图像的检测和识别算法[J]. 计算机与现代化, 2024, 0(12): 84-90. |
[7] | 张昆1, 张永伟1, 吴永城1, 张笑文2, 翟世臣2. 基于大模型的设备故障知识图谱自动构建方法[J]. 计算机与现代化, 2024, 0(11): 46-53. |
[8] | 张志霞, 秦志毅. 基于变分模态分解和IGJO-SVR的网络舆情预测[J]. 计算机与现代化, 2024, 0(11): 77-83. |
[9] | 万鸿炜, 陈平华. 基于Involution算子和协调反向注意力的息肉图像分割[J]. 计算机与现代化, 2024, 0(11): 84-90. |
[10] | 张宇1, 2, 黎靖1, 2, 马铭1, 2, 王众祥1, 2, 孙妍1, 2. YOLOLW:一个新的轻量级目标检测模型[J]. 计算机与现代化, 2024, 0(11): 91-98. |
[11] | 董玉玟. 基于改进YOLOv7-tiny的多尺度运动目标检测算法[J]. 计算机与现代化, 2024, 0(11): 99-105. |
[12] | 祁贤, 刘大铭, 常佳鑫. 基于改进自注意力机制的多视图三维重建[J]. 计算机与现代化, 2024, 0(11): 106-112. |
[13] | 陈凯1, 李宜汀1, 2, 全华凤1 . 基于改进YOLOv8的河道废弃瓶检测方法[J]. 计算机与现代化, 2024, 0(11): 113-120. |
[14] | 杨庆五, 罗小辉, 刘鑫. 基于Edge Drawing的工业图像圆检测算法[J]. 计算机与现代化, 2024, 0(11): 121-126. |
[15] | 周安达, 唐超颖. 雨天道路场景语义分割算法及其移动端部署[J]. 计算机与现代化, 2024, 0(10): 7-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||