计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 81-87.doi: 10.3969/j.issn.1006-2475.2025.12.012​

• 图像识别 • 上一篇    下一篇

基于稠密网络与元学习的无参考图像质量评价

  


  1. (东华理工大学信息工程学院,江西 南昌 330013)
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介: 作者简介:刘子阳(1999—),男,河南信阳人,硕士研究生,研究方向:计算机视觉,E-mail: 2022110206@ecut.edu.cn; 通信作者:贾惠珍(1983—),女,河南许昌人,副教授,博士,研究方向:模式识别,计算机视觉,E-mail: jiahuizhen@ecut.edu.cn; 王同罕(1984—),男,江西上饶人,副教授,博士,研究方向:模式识别,计算机视觉,E-mail: thwang@ecut.edu.cn。
  • 基金资助:
    基金项目:国家自然科学基金资助项目(62261001, 62266001)
       

No-reference Image Quality Assessment Based on DenseNet and Meta-learning


  1. (College of Information Engineering, East China University of Technology, Nanchang 330013, China) 
  • Online:2025-12-18 Published:2025-12-18

摘要: 摘要:为解决在有限数据集与复杂的失真条件下,基于卷积神经网络的无参考图像质量评价(No-reference Image Quality Assessment, NR-IQA)模型存在的过拟合与泛化性差问题,本文利用元学习获得不同失真任务之间共享的先验知识,提升模型对未知任务的泛化性。以DenseNet作为骨干网络提取图像特征,实现全面的深度监督,改进网络的信息流和梯度,减少对小样本训练集任务的过拟合。加入多头自注意力机制,使网络从不同子空间捕获多元特征信息与全局图像的长距离依赖,提升模型的学习能力。使用支持集到查询集的双层梯度优化方法在多种已知失真任务上对质量先验模型进行训练,优化模型参数后续梯度下降的过程。在目标NR-IQA任务上进行微调,适当的初始化参数可以使模型快速适应未知失真任务。在真实失真IQA数据集LIVEC与合成失真IQA数据集KADID-10K上进行性能与泛化性测试,SROCC值分别达到0.834与0.831,这表明所提模型与传统算法相比,具有更好的学习能力与泛化性。


关键词: 关键词:卷积神经网络, 无参考图像质量评价, 元学习, DenseNet, 注意力机制

Abstract: Abstract: To address the issues of overfitting and generalization in No-reference Image Quality assessment (NR-IQA) models based on convolutional neural networks under limited datasets and complex distortion conditions, this paper utilizes meta-learning to acquire shared experiential knowledge across different tasks, thereby enhancing the model’s generalization to unknown tasks. Using DenseNet as the backbone network to extract image features, we achieve comprehensive deep supervision, improving the information flow and gradients within the network, and reducing overfitting on small sample training tasks. Additionally, a multi-head self-attention mechanism is incorporated, allowing the network to capture diverse feature information and long-range dependencies of the global image from different subspaces, enhancing the model’s learning capability. A bi-level gradient optimization method from the support set to the query set is employed to train the quality prior model on various known distortion tasks, optimizing the subsequent gradient descent process of the model parameters. Fine-tuning is performed on the target NR-IQA task, where the model can quickly adapt to unknown distortion tasks under appropriately initialized parameters. Performance and generalization tests were conducted on the authentically distorted IQA dataset LIVEC and the synthetically distorted IQA dataset KADID-10K, where the SROCC values reached 0.834 and 0.831, respectively. The results indicate that the proposed model has better learning ability and generalization compared to traditional algorithms.

Key words:
Key words: convolutional neural networks,
no-reference image quality assessment, meta-learning, DenseNet, attention mechanism

中图分类号: