计算机与现代化 ›› 2024, Vol. 0 ›› Issue (06): 25-32.doi: 10.3969/j.issn.1006-2475.2024.06.005

• 算法设计与分析 • 上一篇    下一篇

基于LNS-NSGA2的多目标冷链运输优化

  



  1. (西安工程大学计算机科学学院,陕西 西安 710600)
  • 出版日期:2024-06-30 发布日期:2024-07-17
  • 作者简介: 作者简介:王宁(1999—),男,陕西汉中人,硕士研究生,研究方向:组合优化,群智能优化算法及其应用,E-mail: wangning@stu.xpu.edu.cn; 通信作者:李迎(1987—),女,陕西西安人,讲师,博士,研究方向:群智能优化算法及其应用,E-mail: gniyil_xpu@163.com; 刘枫(1984—),男,山西襄汾人,教授,博士,研究方向:时空数据智能处理,E-mail: liufeng@xpu.edu.cn。
  • 基金资助:
    陕西省自然科学基础研究计划项目(2021JQ-656)
      

Multi-objective Cold Chain Transportation Optimization Based on LNS-NSGA2



  1. (School of Computer Science, Xi'an Polytechnic University, Xi'an 710600, China)
  • Online:2024-06-30 Published:2024-07-17

摘要:
摘要:针对冷链物流配送系统配送成本较高以及车辆有效利用率低的问题,构建以运输成本最小化和用户满意度最大化为目标的多车型冷链物流路径优化模型,同时考虑配送时间窗和生鲜商品新鲜度对用户满意度的影响,不再对不满足时间窗配送的生鲜商品增加额外成本。以带精英策略的非支配排序遗传算法(Elitist Non-dominated Sorting Genetic Algorithm, NSGA2)为基础,设计聚类初始化种群方法,针对路径编码特点设计有序交叉方法;设计一种修复策略修改约束条件导致的不可行解,引导其在约束边缘搜索;结合大规模邻域搜索(Large Neighborhood Search, LNS)算法思想,引导个体在邻域搜索,增加局部搜索能力,丰富种群多样性。仿真实验结果表明,本文算法在多目标多车型路径优化问题中,得到的Pareto前沿明显优于传统的NSGA2算法。

    

关键词: 关键词:冷链物流路径优化, 时间窗约束, 多目标, NSGA2, 邻域搜索

Abstract:
Abstract: Aiming at the problems of high distribution cost and low effective utilization rate of vehicles in the cold chain logistics distribution system, a multi-vehicle cold chain logistics route optimization model aiming at minimizing transportation cost and maximizing user satisfaction was constructed. At the same time, the impact of distribution time window and freshness of fresh goods on user satisfaction was considered, so as to no longer add extra costs to fresh goods that do not meet the time window distribution. Based on Elitist Non-dominated Sorting Genetic Algorithm(NSGA2)with elite strategies, a cluster initializing population method was designed, and an orderly crossover method was designed according to the characteristics of path coding. A repair strategy is designed to modify the infeasible solutions caused by constraints and guide them to search on the edge of constraints. Combined with the idea of Large Neighborhood Search (LNS) algorithm, it guides individuals to search in the neighborhood, increases the local search ability, and enriches the population diversity. The simulation results show that the Pareto frontier obtained by the algorithm is obviously superior to the traditional NSGA2 algorithm in multi-objective multi-vehicle routing optimization problem.

Key words: Key words: cold chain logistics route optimization, time window constraint, multi-objective, NSGA2, neighborhood search

中图分类号: