[1]金千汇. 港口管理的现状与创新改革新思路[J]. 科技经济导刊, 2018,26(33):243.
[2]杨子贤. 基于深度学习卷积神经网络图像识别技术的研究与应用[J]. 中国设备工程, 2018(23):146-149.
[3]白璐,衣姝颖,李天平. 基于深度学习的车牌识别技术研究[J]. 山东师范大学学报(自然科学版), 2018,33(4):438-442.〖HJ1.35mm〗
[4]刘华春. 卷积神经网络在车牌识别中的应用研究[J/OL]. 计算机技术与发展, (2018-12-20)[2018-12-29]. http://kns.cnki.net/kcms/detail/61.1450.TP.20181220.1035.026.html.
[5]古辉,王益义. 船牌识别系统中的变形校正方法研究[J]. 现代电子技术, 2009,32(10):87-90.
[6]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 2012 International Conference on Neural Information Processing Systems. 2012:1097-1105.
[7]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:21-37.
[8]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015:91-99.
[9]于兰兰. 候选框算法在图像车辆检测中的应用研究[D]. 青岛:青岛大学, 2018.
[10]GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[11]REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[12]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[13]李明攀. 基于深度学习的目标检测算法研究[D]. 杭州:浙江大学, 2018.
[14]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440.
[15]ZHOU Z G, LEI H, DING P C, et al. Vehicle target detection based on R-FCN[C]// 第30届中国控制与决策会议论文集(5). 2018:5739-5743.
[16]刘建国,代芳,詹涛. 基于卷积神经网络的车牌识别技术[J]. 物流技术, 2018,37(10):62-66.
[17]YUAN Z W, ZHANG J. Feature extraction and image retrieval based on AlexNet[C]// Proceedings of the 8th International Conference on Digital Image Processing. 2016.
[18]LIN D Z, LIN F, LV Y P, et al. Chinese character CAPTCHA recognition and performance estimation via deep neural network[J]. Neurocomputing, 2018,288:11-19.
[19]王润民,桑农,丁丁,等. 自然场景图像中的文本检测综述[J]. 自动化学报, 2018,44(12):2113-2141.
[20]ZHOU X Y, YAO C, WEN H, et al. EAST: An efficient and accurate scene text detector[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:2642-2651.
[21]SANCHEZ J A, TOSELLI A H, ROMERO V, et al. ICDAR 2015 competition HTRtS: Handwritten text recognition on the tranScriptorium dataset[C]// Proceedings of the 13th International Conference on Document Analysis and Recognition. 2015:1166-1170.
[22]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778. |