[1] 孙景生,康绍忠. 我国水资源利用现状与节水灌溉发展对策[J]. 农业工程学报, 2000,16(2):1-5.
[2] 韩伟锋,武继承,何方. 作物需水量研究综述[J]. 华北水利水电学院学报, 2008,29(5):30-33.
[3] 张兵,袁寿其,成立,等. 基于L-M优化算法的BP神经网络的作物需水量预测模型[J]. 农业工程学报, 2004,20(6):73-76.
[4] 夏泽豪,翁绍捷,罗微,等. 基于灰色神经网络的作物需水量预测模型研究[J]. 中国农机化学报, 2015,36(2):219-223.
[5] 孟丽丽,迟道才,崔屾,等. α-加权模糊线性回归模型在参考作物需水量预测中的应用[J]. 沈阳农业大学学报, 2008,39(5):603-606.
[6] 刘婧然,马英杰,王喆,等. 基于RBF神经网络与BP神经网络的核桃作物需水量预测[J]. 节水灌溉, 2013(3):16-19.
[7] VAPNIK V N. The Nature of Statistical Learning[M]. New York: Springer, 1995.
[8] 张弦,王宏力. 基于粒子群优化的最小二乘支持向量机在时间序列预测中的应用[J]. 中国机械工程, 2011,22(11):2572-2576.
[9] 赵伟. 基于SOA-LSSVM的短时交通流量预测[J]. 计算机与现代化, 2015(6):27-31.
[10]苏立. 基于HHT变换和FOA_LSSVM的电缆故障诊断[J]. 计算机与现代化, 2017(9):96-101.
[11]JI H F, LONG J, FU Y F, et al. Flow pattern identification based on EMD and LS-SVM for gas-liquid two-phase flow in a minichannel[J]. IEEE Transactions on Instrumentation and Measurement, 2011,60(5):1917-1924.
[12]LU X J, FAN B, HUANG M H. A novel LS-SVM modeling method for a hydraulic press forging process with multiple localized solutions[J]. IEEE Transactions on Industrial Informatics, 2015,11(3):663-670.
[13]ZHANG N, SHETTY D. An effective LS-SVM-based approach for surface roughness prediction in machined surfaces[J]. Neurocomputing, 2016,198:35-39.
[14]CHAMKALANI A, ZENDEHBOUDI S, BAHADORI A, et al. Integration of LSSVM technique with PSO to determine asphaltene deposition[J]. Journal of Petroleum Science and Engineering, 2014,124:243-253.
[15]YIN S, JIANG Y C, TIAN Y, et al. A data-driven fuzzy information granulation approach for freight volume forecasting[J]. IEEE Transactions on Industrial Electronics, 2017,64(2):1447-1456.
[16]LONG B, XIAN W M, LI M, et al. Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance[J]. Neurocomputing, 2014,133:237-248.
[17]CLERC M. Particle Swarm Optimization[M]. New York: John Wiley & Sons, 2010.
[18]RIBEIRO R S D F. Fuzzy Logic Based Automated Irrigation Control System Optimized via Neural Networks[D]. America: The University of Tennessee, 1998.
[19]BREIMAN L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
[20]〖JP2〗雷武,廖闻剑,彭艳兵. 基于随机森林与LambdaMART的搜索排序模型[J]. 计算机与现代化, 2017(3):54-58.
[21]石礼娟,谢彪彪,谢新港,等. 基于组合核函数的籼稻重度不宜存检测模型[J]. 农业机械学报, 2013,44(8):165-168. |