计算机与现代化 ›› 2018, Vol. 0 ›› Issue (09): 122-.doi: 10.3969/j.issn.1006-2475.2018.09.023
• 应用与开发 • 上一篇
收稿日期:
2018-03-15
出版日期:
2018-09-29
发布日期:
2018-09-30
作者简介:
陈希远(1993-),男,江西樟树人,华南师范大学计算机学院硕士研究生,研究方向:人工智能与神经网络; 朱佳,男,研究员,博士后,研究方向:机器学习与大数据应用。
Received:
2018-03-15
Online:
2018-09-29
Published:
2018-09-30
摘要:
卷积神经网络(CNN)已经引起了计算机视觉领域的变革。本文探讨CNN的一个具体应用:已知价格在过去一段时间内的波动图后,利用CNN对外汇市场的价格进行预测,然后将预测结果用于外汇交易,最终获利。采用联合特征学习机制,创建一种新的可处理多种特征的多尺度CNN应用框架。实验结果表明,相比于只考虑图像特征的传统CNN及其他机器学习算法,本文算法的实用性更强。
中图分类号:
陈希远,朱 佳. 基于联合特征学习的多尺度卷积#br# 神经网络在外汇交易市场中的应用[J]. 计算机与现代化, 2018, 0(09): 122-.
CHEN Xi-yuan, ZHU Jia. A Multiscale Convolutional Neural Network for Forex Trading Using Joint Feature Learning[J]. Computer and Modernization, 2018, 0(09): 122-.
[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012,1:1097-1105. [2] Mesnil G, Dauphin Y, Yao Kaisheng, et al. Using recurrent neural networks for slot filling in spoken language understanding[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015,23(3):530-539. [3] Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning. 2010:807-814. [4] Huang G B, Lee H, Learned-Miller E. Learning hierarchical representations for face verification with convolutional deep belief networks[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012: 2518-2525. [5] Le Q V, Karpenko A, Ngiam J, et al. ICA with reconstruction cost for efficient overcomplete feature learning[C]// Proceedings of the 24th International Conference on Neural Information Processing Systems. 2011:1017-1025. [6] Le Q V, Zou W Y, Yeung S Y, et al. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. 2011:3361-3368. [7] Bo Liefeng, Ren Xiaofeng, Fox D. Multipath sparse coding using hierarchical matching pursuit[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013:660-667. [8] Boureau Y L, Ponce J, LeCun Y. A theoretical analysis of feature pooling in visual recognition[C]// Proceedings of the 27th International Conference on Machine Learning. 2010:691-699. [9] Yang Jianchao, Yu Kai, Gong Yihong, et al. Linear spatial pyramid matching using sparse coding for image classification[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009:1795-1801. [10]Li Zhen, Yu Yizhou. Protein secondary structure prediction using cascaded convolutional and recurrent neural networks[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016:2560-2567. [11]Qian Ning. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999,12(1):145-151. [12]Bottou L. Stochastic gradient descent tricks[M]// Neural Networks: Tricks of the Trade. Springer, 2012:421-436. [13]Domhan T, Springenberg J T, Hutter F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. 2015:3460-3468. [14]Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015,61:85-117. [15]Swersky K, Snoek J, Adams R P. Freeze-Thaw Bayesian Optimization[DB/OL]. https://arxiv.org/pdf/1406.3896v1.pdf, 2014-06-16. [16]Nesterov Y E. A method of solving a convex programming problem with convergence rate O(1/k2)[J]. Soviet. Math. Dokl., 1983,27(2):372-376. [17]Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011,12:2121-2159. [18]Wang Shasha, Jiang Liangxiao, Li Chaoqun. Adapting naive Bayes tree for text classification[J]. Knowledge and Information Systems, 2015,44(1):77-89. [19]Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995,20(3):273-297. [20]Kennedy A, Shepherd M. Automatic identification of home pages on the Web[C]// Proceedings of the 38th Annual Hawaii International Conference on System Sciences. 2005: 99-108. [21]Chen Tianqi, Guestrin C. XGBoost: A Scalable Tree Boosting System[DB/OL]. https://arxiv.org/pdf/1603.02754v3.pdf, 2016-06-10. |
[1] | 何思达, 陈平华. 基于意图的轻量级自注意力序列推荐模型[J]. 计算机与现代化, 2024, 0(12): 1-9. |
[2] | 郑久超, 赵新元. 基于主题与描述信息的实体链接方法[J]. 计算机与现代化, 2024, 0(12): 10-14. |
[3] | 赵晨阳, 薛涛, 刘俊华. 基于改进Stable Diffusion的时尚服饰图案生成[J]. 计算机与现代化, 2024, 0(12): 15-23. |
[4] | 黄庭培1, 马禄彪1, 李世宝2, 刘建航1. 基于WiFi和原型网络的手势识别方法[J]. 计算机与现代化, 2024, 0(12): 34-39. |
[5] | 刘云海1, 冯广1, 吴晓婷2, 杨群2. 复杂施工场景下的安全帽佩戴检测算法[J]. 计算机与现代化, 2024, 0(12): 66-71. |
[6] | 王艳媛, 茅正冲. 中英文场景文本图像的检测和识别算法[J]. 计算机与现代化, 2024, 0(12): 84-90. |
[7] | 张昆1, 张永伟1, 吴永城1, 张笑文2, 翟世臣2. 基于大模型的设备故障知识图谱自动构建方法[J]. 计算机与现代化, 2024, 0(11): 46-53. |
[8] | 张志霞, 秦志毅. 基于变分模态分解和IGJO-SVR的网络舆情预测[J]. 计算机与现代化, 2024, 0(11): 77-83. |
[9] | 万鸿炜, 陈平华. 基于Involution算子和协调反向注意力的息肉图像分割[J]. 计算机与现代化, 2024, 0(11): 84-90. |
[10] | 张宇1, 2, 黎靖1, 2, 马铭1, 2, 王众祥1, 2, 孙妍1, 2. YOLOLW:一个新的轻量级目标检测模型[J]. 计算机与现代化, 2024, 0(11): 91-98. |
[11] | 董玉玟. 基于改进YOLOv7-tiny的多尺度运动目标检测算法[J]. 计算机与现代化, 2024, 0(11): 99-105. |
[12] | 祁贤, 刘大铭, 常佳鑫. 基于改进自注意力机制的多视图三维重建[J]. 计算机与现代化, 2024, 0(11): 106-112. |
[13] | 陈凯1, 李宜汀1, 2, 全华凤1 . 基于改进YOLOv8的河道废弃瓶检测方法[J]. 计算机与现代化, 2024, 0(11): 113-120. |
[14] | 杨庆五, 罗小辉, 刘鑫. 基于Edge Drawing的工业图像圆检测算法[J]. 计算机与现代化, 2024, 0(11): 121-126. |
[15] | 周安达, 唐超颖. 雨天道路场景语义分割算法及其移动端部署[J]. 计算机与现代化, 2024, 0(10): 7-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||