• 应用与开发 • 上一篇
收稿日期:
2018-03-15
出版日期:
2018-09-29
发布日期:
2018-09-30
作者简介:
陈希远(1993-),男,江西樟树人,华南师范大学计算机学院硕士研究生,研究方向:人工智能与神经网络; 朱佳,男,研究员,博士后,研究方向:机器学习与大数据应用。
Received:
2018-03-15
Online:
2018-09-29
Published:
2018-09-30
摘要:
卷积神经网络(CNN)已经引起了计算机视觉领域的变革。本文探讨CNN的一个具体应用:已知价格在过去一段时间内的波动图后,利用CNN对外汇市场的价格进行预测,然后将预测结果用于外汇交易,最终获利。采用联合特征学习机制,创建一种新的可处理多种特征的多尺度CNN应用框架。实验结果表明,相比于只考虑图像特征的传统CNN及其他机器学习算法,本文算法的实用性更强。
中图分类号:
陈希远,朱 佳. 基于联合特征学习的多尺度卷积#br# 神经网络在外汇交易市场中的应用[J]. 计算机与现代化, doi: 10.3969/j.issn.1006-2475.2018.09.023.
CHEN Xi-yuan, ZHU Jia. A Multiscale Convolutional Neural Network for Forex Trading Using Joint Feature Learning[J]. Computer and Modernization, doi: 10.3969/j.issn.1006-2475.2018.09.023.
[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012,1:1097-1105. [2] Mesnil G, Dauphin Y, Yao Kaisheng, et al. Using recurrent neural networks for slot filling in spoken language understanding[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015,23(3):530-539. [3] Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning. 2010:807-814. [4] Huang G B, Lee H, Learned-Miller E. Learning hierarchical representations for face verification with convolutional deep belief networks[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012: 2518-2525. [5] Le Q V, Karpenko A, Ngiam J, et al. ICA with reconstruction cost for efficient overcomplete feature learning[C]// Proceedings of the 24th International Conference on Neural Information Processing Systems. 2011:1017-1025. [6] Le Q V, Zou W Y, Yeung S Y, et al. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. 2011:3361-3368. [7] Bo Liefeng, Ren Xiaofeng, Fox D. Multipath sparse coding using hierarchical matching pursuit[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013:660-667. [8] Boureau Y L, Ponce J, LeCun Y. A theoretical analysis of feature pooling in visual recognition[C]// Proceedings of the 27th International Conference on Machine Learning. 2010:691-699. [9] Yang Jianchao, Yu Kai, Gong Yihong, et al. Linear spatial pyramid matching using sparse coding for image classification[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009:1795-1801. [10]Li Zhen, Yu Yizhou. Protein secondary structure prediction using cascaded convolutional and recurrent neural networks[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016:2560-2567. [11]Qian Ning. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999,12(1):145-151. [12]Bottou L. Stochastic gradient descent tricks[M]// Neural Networks: Tricks of the Trade. Springer, 2012:421-436. [13]Domhan T, Springenberg J T, Hutter F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. 2015:3460-3468. [14]Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015,61:85-117. [15]Swersky K, Snoek J, Adams R P. Freeze-Thaw Bayesian Optimization[DB/OL]. https://arxiv.org/pdf/1406.3896v1.pdf, 2014-06-16. [16]Nesterov Y E. A method of solving a convex programming problem with convergence rate O(1/k2)[J]. Soviet. Math. Dokl., 1983,27(2):372-376. [17]Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011,12:2121-2159. [18]Wang Shasha, Jiang Liangxiao, Li Chaoqun. Adapting naive Bayes tree for text classification[J]. Knowledge and Information Systems, 2015,44(1):77-89. [19]Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995,20(3):273-297. [20]Kennedy A, Shepherd M. Automatic identification of home pages on the Web[C]// Proceedings of the 38th Annual Hawaii International Conference on System Sciences. 2005: 99-108. [21]Chen Tianqi, Guestrin C. XGBoost: A Scalable Tree Boosting System[DB/OL]. https://arxiv.org/pdf/1603.02754v3.pdf, 2016-06-10. |
[1] | 王可1,2,李晖1,2,陈梅1,2,戴震宇1,2,朱明3. 一种面向工作负载预测的基于小波变换的特征提取方法[J]. 计算机与现代化, 2020, 0(05): 1-. |
[2] | 彭路1,朱君2,邹云峰2. 基于深度神经网络的电力客户诉求预判[J]. 计算机与现代化, 2020, 0(05): 22-. |
[3] | 史明华,吴广潮. 基于聚类混合采样的不平衡数据分类[J]. 计算机与现代化, 2020, 0(05): 34-. |
[4] | 张文华,张志俊. 基于SVM的新能源公交车运营里程核查方法[J]. 计算机与现代化, 2020, 0(05): 39-. |
[5] | 胡全贵,赵恩来,贾伟昭,开北强. 数据中心巡检机器人信息平台实时任务容错调度算法[J]. 计算机与现代化, 2020, 0(05): 50-. |
[6] | 罗伟,梁世豪,姜鑫,安妮,杜锐. 基于深度学习的野外露头区岩石裂缝识别[J]. 计算机与现代化, 2020, 0(05): 56-. |
[7] | 吴世海,鲍义东,陈果,陈秋实. 基于随机Gabor特征的半参考农作物图像质量评价方法[J]. 计算机与现代化, 2020, 0(05): 70-. |
[8] | 郭建龙1,熊山1,李晓莹2,祁彦威2,吴澄凯3. 基于主变起火应急演练的虚拟现实培训系统[J]. 计算机与现代化, 2020, 0(05): 75-. |
[9] | 薛伟莲,赵娣,张颖超. 室内定位研究综述[J]. 计算机与现代化, 2020, 0(05): 80-. |
[10] | 周丽1,2,申国伟1,2,赵文波1,2,周雪梅1,2. 一种基于GAN的异构信息网络表示学习方法[J]. 计算机与现代化, 2020, 0(05): 89-. |
[11] | 刘勃1,王明伟2,常立博3. 老年人运动状态监测和跌倒报警系统[J]. 计算机与现代化, 2020, 0(05): 101-. |
[12] | 郝敏,刘航,李扬,简单,王俊影. 基于聚类分析与说话人识别的语音跟踪[J]. 计算机与现代化, 2020, 0(04): 7-. |
[13] | 王志平,郑宝友,刘仪伟. 一种改进的LSTM模型在图像标题生成中的应用[J]. 计算机与现代化, 2020, 0(04): 37-. |
[14] | 李灵杰1,童晶1,2,步文瑜1,孙海舟1,陈正鸣1,2. 基于模板匹配的三维人体语义特征提取算法[J]. 计算机与现代化, 2020, 0(04): 95-. |
[15] | 付磊,任德均,胡云起,郜明,邱吕. 基于ResNet网络的医用塑瓶制造缺陷检测方法[J]. 计算机与现代化, 2020, 0(04): 104-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||