计算机与现代化

• 模式识别 • 上一篇    下一篇

WiFi与惯导融合的渐消因子扩展卡尔曼滤波实时定位算法

  

  1. (1.江苏建筑职业技术学院信息传媒与艺术学院,江苏徐州221008; 2.中国矿业大学计算机学院,江苏徐州221116) 
  • 收稿日期:2017-08-05 出版日期:2017-12-25 发布日期:2017-12-26
  • 作者简介:段珊珊(1975-),女,江苏徐州人,江苏建筑职业技术学院信息传媒与艺术学院讲师,硕士,研究方向:导航与信息安全; 李昕(1978-),男,江苏徐州人,中国矿业大学计算机学院讲师,博士,研究方向:导航与信息安全。
  • 基金资助:
    国家自然科学基金资助项目(41674030)

A Real-time Positioning Algorithm Using Fading Factor Kalman  Filter Based on WiFi and Inertial Fusion

  1. (1. School of Information and Art, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221008, China; 2. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China)
  • Received:2017-08-05 Online:2017-12-25 Published:2017-12-26

摘要: 针对无线信号强度易受干扰,基于RSSI指纹库室内定位技术的定位结果常出现跳跃不稳定现象,提出并实现一种WiFi与惯导融合的渐消因子扩展卡尔曼滤波实时定位算法。该方法基于加速度数据进行多重约束波峰-波谷检测实现自适应步态识别,根据室内几何布局特征划分矢量域修正方向传感器数据确定其航向角,获得行人位移参数。然后建立基于渐消因子扩展卡尔曼滤波融合模型,实现最终位置估计。实验结果表明该算法可以有效抑制无线定位的跳跃或堆积现象,进而增强室内定位稳健性与可靠性,平均定位精度在2 m左右。 

关键词: 室内定位, WiFi定位, 行人航迹推算, 多传感器融合

Abstract: Due to the indoor positioning errors produced by the unsteadiness of received WiFi signal for fingerprint-based WLAN location technique, a new positioning technology by fusing inertial measuring unit(IMU) and WiFi wireless signals with fading-factor-based extended Kalman filter (EKF) is proposed. A multiple restrictions for peak-valley detection is developed on acceleration for real-time step recognition. Then the paper utilizes the feature of indoor environment to amend the orientation for getting a correct heading angle. Finally, this paper proposes a fading-factor-based EKF fusion model based on displacement constraint with WiFi and inertial sensors positioning techniques for user’s location estimation. The experimental result shows that, this algorithm can effectively suppress the unsteadiness of jump or centralization, and enhance the indoor location robustness and reliability. The average positioning accuracy is about two meters.

Key words: indoor positioning; WiFi location, pedestrian dead reckoning, multiple sensor fusion

中图分类号: